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CALCULATING THREE-DIMENSIONAL FLUID FLOWS USING
NONORTHOGONAL GRIDS
C. R. MALISKA L G. D. RAITHBYZ
ABSTRACT

This paper describes a mew solution technique for the
prediction of two-dimensional elliptic and three-dimensional
parabolic flows., The method solves the conservation equations
in a general curvilinear coordinate system maintaining the
Cartesian velocity components as dependent variables. The
disadvantage in using the Cartesian velocities as dependent
variables in nonorthogonal grids is by-passed by forming finite
difference equations for the contravariant components in the
new system. The PRIME technique [1,2] (update PRessure
Implicitly and Momentum Expliecitly) is used to handle the
pressure velocity coupling problem in econjunction with a new
strategy which employs nonorthogonal grids. The method requires
slightly higher computer storage but shows virtually the same
computational performance when compared with schemes specially
designed for Cartesian meshes Eﬂ. The method is tested by
solving two-dimensional elliptic and three-dimensional
parabolic flows.

1. INTRODUCTION

The prediction of "incompressible" [4] fluid flows in
arbitrary regions poses two major problems to the numerical
analyst. They are; the strong coupling between pressure and
velocity, for flows in which compressibility effects do not
dominate, and the domain discretization. The domain
discretization has impertant consequences related to the
complexity and generality of the computer code to be designed.
If the grid is obtained using an orthogonal system the
advantage is that the conmservation equations are written in a
simple form. This apparent advantage, however, is lost when cne
faces the complexity in dealing with irregular elements at the
boundaries. To overcome this difficulty it seems to require the
governing equations be written in a coordinate system which
matches the boundary of the domain, defined here a

eometrically natural, or boundary fitted coordinate system

TE]. These systems may be either orthogonal or monmorthogonal,
thus necessitating a decision te be made as which type to use.
Orthogonal discretization is numerically attractive since the
solution techniques already developed for Cartesian grids can
be applied to any orthogonal system with little extra effort.
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However, the generation of orthogonal meshes is neot a
simple matter due to the necessity inm satisfying the
orthogonality constraint. In addition, it may be impossible to
find an orthogonal mesh for a complex region if some
concentration of the coordinate lines is required. In the other
hand, the use of nonorthogonal systems has the disadvantage
that the equations of motion are somevwhat more complex because
the presence of the cross derivative terms. These terms will
lead to 9-point finite difference equations (for 2-D problems),
opposed to a 5-point equations for orthogonal systems. Also,
special care is required in choosing the storage location for
the dependent variables in the computational grid. A nen
suitable choice may cause the solution of the 9-point equation
for pressure to require excessive computer effort, or it may
not converge at all [6].

In spite of that, if fast automatic methods for
generating nonorthogonal grids are available, in conjunction
with well designed and simple finite difference models, the use
of nonorthogonal meshes may be about an optimum alternative for
handling fluid flow problems in arbitrary complex geometries.
A method which attempts to fullfil the above requirements is
now addressed.

2. COORDINATE SYSTEM GENERATION

Consider a three-dimensional irregular domain defined in
the Cartesian system, Figure la. One wants to map this demain
onto a parallelepiped in the (£,n,I') transformed system, Figure
lb. To realize this objective the following transformation is

used
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Figure 1. Physical and transformed domains
E=E(xy,2) ;n =n0ty,2) ; I=z2 (1)

Following Thompson et al [5], the nonorthogonal coordinate
system was generated solving the following linear system of
equations
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Exx + EY? = P(E,n) (2)
n” = Q(E,n) (3)

The above system was transformed and numerically solved in the
new coordinate system. For details see [5,7].

3. TRANSFORMATION OF THE CONSERVATION EQUATIONS

At this point a decision which has important influences on
the overall performance of the model must be made. The question
is wheter to have the Cartesian or the contravariant wvelocity
components as dependent variables in the new system. The
natural choice would be to use the contravariant components
since they are normal to the control volume surfaces and so
they carry the mass flow across the element boundaries. This
route gives rise to a complex set of transformed equations
difficulting the finite differencing process.

If the Cartesian velocities are employed all wvelocity
components need to be calculated at the same point on the grid,
so that mass flow across element surfaces can be calculated.
The great advantage, however, is that the transformed equations
are very simple, making the finite differencing process and
easy task. The latter approach is adopted here.

3.1. Transformed Set of Equations

A conservative form of the conservation equations can be
- written as [B]

Foo®) + Jzout) + F(ove) + To(owd) + #° =
2l . %E(r* o b st (%)

where ¢ is any scalar field and P$ and S are the pressure and
source terms when appropriate. For many duct flow problems
encountered in engineering practice the downstream flow
conditions have little effect on the upstream flow parameters.
The parabolic approximation appears then as a good alternative.
In this case, the pressure is split into two terms as follow

P(x,y,2) = B(x,y;z) + P(z) (5)

Equation (6) is transformed to the new system following
the procedure described in E?I. The resulting equation is in
the following conservative form

T3 + Jeou) + Zove) + Jncove) + BY -

a_ ] ] a 3¢ ] =
aE(CI 3% + Co Eﬁa + EH{C3 3n + Cy E%J + 5 (6)
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where U, V and W are the contravariant velocity components
written without metric normalizationm. They are related to the

Cartesian velocities by

U= Yyt = X ¥ + (Fr!n = Ian}H (73
Ve e ygu * (!TFE - yer}ﬂ (8)
7 (9

J

where J = (xzy, ~ )71 is the Jacobian of the
1:rnmsfq:n:-m.e.t1'.1:%111:I Th:“gs and §¢ terms can be found in [7,%]. The
coefficients in Equation (6) are given by

--Tt A - ¥
¢, =i ; G=cy=-ThB ;5 c3=Tly (10,11,12)

4. FINITE DIFFERENCE PROCEDURE

4.1. Storage Location of the Variables on the Grid

The storage layout where all variables (velocity,
pressure, etc.) are stored at the same point, trend followed by
most of the recent works dealing with nonorthogonal grids is
not adopted in this study. The reason is the danger this
approach can pose in having unrealistic pressure and velocity
fields [1C]. The recommended remedy is the use of a staggered
layout [10]. However, the proper staggered layout is not easily
recognized when the Cartesian velocities are used as dependent
variables in nonorthogonal grids. Then, a storage layout which
promotes good convergence characteristics for the Poisson-like
equation for pressure should be the main target in dES}En
models to prediet incompressible fluid flows. Another ilmportant
feature to be pursued is to have the model reverting Lo a
5-point scheme when the grid employed is orthogonal. The latter
characteristic is numerically attractive since many non-
orthogonal grids are, in many situations, quasi-orthogonal or
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Figure 2. Grid layout
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nonorthogonal only in certain regions. The desired flexibility
and glr!nerali.t.jr is thus achieved since the scheme is not
restricted to the requirements of an orthogonal grid but shares
many of its advantages. Figure I shows the storage layout
adopted in this study. A detailed discussion on this subject
can be found in [7,9].

4,2. Discrete Equations

‘ To obtain the discrete equations, Equation (4) is
integrated over the elemental control volume shown in Figure
3b. Approximations are introduced [4,11] to reduce the integral
equation te the algebraic equation

n+l n+l n+l n+l n+l
Ad =
PP 1"‘mr}l! * AUQH i ﬂnﬁﬂ * Asés
A
n+l n
Ay T oL Plav et Er¥]av a3
where A = = (pU) A&nAT I.f-l— -a )+ E C ﬁnﬂr (14a)
@ e 2 e e le AE .
A =+ (o aarE+ea)+Bc, andd s
W w 2 W w lw'  AE )
*
ﬁp ﬁe +* hu * ﬁn + &s + Au (lée)
o A = a* (1*E)
3 o F (14d)
$ &b, 2 d a 3
ot =30 e 2, 3 s Loy 3D (14e)

In the above equations LE] denotes the finite difference
approximation of the quantity in brackets and E is a constant
that can not exceed unity for explicit formulatiom.

The discrete equations for the contravariant velocity
components are obtained using Equation (13) with ¢ equal te u
and_u and Equations (7) and (8). For the control volume
depicted in Figure 2 the U, and V, equations are

- AT Al
U =01 = (— - e - =
" e ™ (o a) (P-Pp) + {ﬂm"' B)  (Pyg* Py=Pgp=Pg) (15)
p P
= AT aAr
V =V = (= - = - -
n n AY .’r}n(PH PE‘}'I * {-ﬁn? E"]n(PHE+PE PHH PHJ (1)
P P

Similar equations can be written for U, and V;, completing then
the four velocity components needed for the mass conservation
balam::e applied to the elemental wvolume shown in Figure 3b. The
equation is

(o) g~ (oU) ) AnAT + ((pV¥) - (V) ) AEAT + (oW - (W) ) BnAE  (17)
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Figure 3. Physical and transformed elemental volumes

4.3. Solution Procedure

In the present work only 3-D flows with a predominant flow
direction are considered. Computer storage for the variables
are needed only in the calculation and upstream plane. The
pressure velocity coupling in the axial directiom is solwved
using the method developed by Raithby and Schneider B] which
removes the necessity of iteration by taking advantage of the
linear relationship between the axial velocity and the pressure
gradient. The elliptic coupling problem is solved using the
PRIME method [1,Z]. This method simplifies considerably the
iteration cycle since it eliminates the standard two-step
solution procedure in which an estimate of the velocity field
is obtained by solving the momentum equation with a guessed
pressure field, followed by the solution of two Poisson
equations for velocity correction and pressure updating [4,10,9).

In the PRIME procedure a Poisson equation is formed by
inserting Equations (15) and (16) into continuity equation. The
solution of the resulting equation will give a pressure field
which is used to correct the hat-velocity wvector and at the
same time is recognized as the update pressure field. In this
technique the momentum equations are solved in a Jacobi
iteration fashion. The great attractiveness of this approachis
the simplicity it introduces in the computer code. The
determination of the hat-velocities uses the best estimates of
the velocity field.

The following steps constitutes ome iteration cycle
performed in the equation set when solving 3-D parabolic fluid
flow problems.

(a) Guess the cross pressure field in the inlet section and the
pressure gradient dp/dz. Specify a 3-D velocity profile at
the duct inlet.

{b) Compare the coefficients for the axial momentum equation.
Solve for w and compute the mass flow. Applying the method
described in [4] determine w and dp/dz. Compute W.
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(c) Compute the coefficients for the equations for U and V and
compute the hat-veloecities. See [? for details.

(d) Form and solwve the Poisson-like equation for pressure. The
equation is

AFPP = ﬁEPE * AnFH * HEPS * ﬁwpw * ﬁnBPNE = ﬁsePSE .
* P + B 18
ﬁswPSW ﬁnf.r NW (18)
d = + + A + A 19
an .ﬁ.p !.E A e o . {19

It is seen that the pressure at a point P is strongly linked
with the four parallel pressure points and not with the
diagonal ones. This is the type of structure exhibited by the
Poisson equation derived for orthogonal grids using the
standard staggered layout. This similarity is probably the
reason why this equation shows similar convergence rate as the
equations for orthogonal meshes. In additiom, all the diagonal
coefficients vanish when the grid employed is orthogonal. The
equation was successfully solved using the S5.0.R. point
iteration method.
{e) Correct the contravariant veleocities using Equations (15)
and (16). These velocities now satisfy mass conservatiom.
(f) Determine the contravariant velocities that do not enter
the mass conservation balance using an interpolation
process.
(g) Determine the Cartesian velocities using Equations (7), (8)
and (9).
Iteration, by cycling back to step (b) is required to account
for nonlinearities and inter-equation coupling.

3. APPLICATIONS

The assessment of a 3-D parabolic model must begin by
testing its secondary flow model. The reason is because the
main flow is wery little affected by changes in the cross flow
and, consequently, the checking of the flow parameters in the
predominant direction only does not validate the full model.
Furthermore, the experience gained in dealing with the 2-D
elliptic flows in nonorthogonal grids is, in principle,
extendable to 3-D elliptic problems. These facts require that
the model be tested by first solving 2-D elliptic flows such
that the cross flow velocities can be compared guantitatively.

The driven flow in a square cavity with a moving lid is a
good test problem since flow conditions ranging from dominant
diffusion to dominant convection can be analysed. Figure 4a
shows the geometric parameters and the boundary conditions for
the problem. A nonorthogonal grid with 28 % 28 grid points shown
in Figure 4b was used. The problem was also solved in a 28 x 28
Cartesian grid and the solutions compared. Figure 5 shows the
u-velocity along the lines A-A and B-B in the nonorthogonal
grid for Be = 400. In the Cartesian grid the lines A-A and B-B
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Figure &, Square cavity problem

are constant x lines with the values l4Ax and 20Ax. The results
obtained using orthogonal and nonorthogonal grids are in very
good agreement. A slightly disagreement is observed, for a
small region close to the maximum reversal velocity, for the
results obtained in this study compared to those of Burggraf
12]. This disagreement is noted for both coordinate systems
used, what suggests that the problem is not due to the presence
of nonorthogonalities. The most probable cause is that the grid
was not refined to the point where numerical diffusion no
longer influences the solution. Figure & shows tﬁe v=velocity
along the C-C and D-D lines. In the Cartesian grid these are
lines of y = 6Ay and y = l4jAy. Again the results using both
grids compares very well. Figure 7 br;ngg to th? reader the
comparisons of the convergence rate obtained using both

S . a _ a4 coordinate systems.
’Qm GIB II:,Iﬁ 0[4 ulz - E‘iE It can be seen that

the number of
iterations needed
to obtain a solution
T AL of the equation set,
R T to the same level
of accuracy, is
practically the
same for both grids.
This finding
encourages further
developments in
this area. As a
second test problem
the parabolic flow
l : in a converging- .
rging duct wit
-12 -0 -08 -0 -Q4 -02 00 Q2 :ﬂiﬁn:m“
e section was solved,
Figure 5. Square cavity, u = velocity The duct geometry
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: - T T is shown in Figure
8 and the geometric
characteristics of
the intermediate
calculation planes
can be found in
[7]. The objective
in solving this
problem was two—
fold. Firstly, due
to the duct
convergence the
flow exhibits
strong cross

v/ Uil

| I- | 1 velocities,
oo 02 04 a6 a8 10 situation not
L encountered in the
Figure 6. Square cavity, v - velocity entrance region of

constant cross

i g 400 section duct flows.
&0 + ORTHOGONAL - Sﬂ?mdly, the
# MON ORTHOGOMAL existence of a
| My MUMBER OF ITERATIONS ON THE different
E PRESSURE  EOQUATION nonerthogonal
My NUMBER OF ITERATIONS ON THE coordinate system
a0k SET OF EQUATIONS = for each
i ¢ calculation plane
t ok constitutes a good
test for the
generality of the
2o 7 technique. The
\h* axial step was
A 1/6th of the inlet
e, N, hydraulic diameter
o R I . colerinae BV [P and nine solution
0 20 40 auN B0 100 120 40 planes were used.
o The velocity
Figure 7. Convergence rate comparison profile of the

fully developed
flow in a rectangular duct was prescribed at the inlet. Figure
9 shows the axial velocity profiles along the symmetry plane
x = 0, Comparisons are not made but it can be seen that the
axial veloeity shows the expected trends. The cross flow
velocities, not reported here, also shows the expected trends.

6. COMCLUSIONS

A solution technique for the prediction of three-
dimensional parabolic incompressible fluid flow in arbitrary
geometry has been presented. The procedure employs non-
orthogonal grids and transforms the conservation equations to
the new curvilinear system maintaining the Cartesian velocity
components as dependent variables.

Figure 8. Converging-diverging duct
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Figure 9. Axial velocity profiles
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In the new
system finite
difference
equations for the
momentum equatlions
are writtem in
terme of the
contravariant
velocity
components. These
equations, togheter
with the mass
conservation
equation, are
solved according to
the PRIME
procedure. The
incorporation of
the PRIME procedure
into a method which
employs non-
orthogonal grids
was of great
benefit since it
introduced the
desirable
simplicity to the
solution procedure
as a whole.

By the tests
performed if is
seen that the
numerical technique
presented here is
very promising.
Currently, tests
are being performed
where inflow-
outflow and thermal
problems are
being solved.
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SECTION 9

NON-NEWTONIAN FLOW



