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Resumo

A simulação numérica é uma ferramenta de extrema importância à in-
dústria do petróleo e gás. A partir dela, podem-se prever os cenários de
produção de um dado reservatório de petróleo e, com base nos dados
obtidos, traçar melhores estratégias de explotação. Entretanto, para que
os resultados advindos da simulação sejam fidedignos, é fundamental o
emprego de modelos físicos fiéis e de uma boa caracterização geométrica
do reservatório. Isso tende a introduzir elevada carga computacional e,
consequentemente, a obtenção da solução do modelo numérico corre-
spondente pode demandar um excessivo tempo de simulação. É evidente
que a redução desse tempo interessa profundamente à engenharia de
reservatórios. Dentre as técnicas de melhoria de performance, uma das
mais promissoras é a aplicação da computação paralela. Nessa técnica,
a carga computacional é dividida entre diversos processadores. Ideal-
mente, a car-ga computacional é dividida de maneira igualitária e, assim,
se N é o núme-ro de processadores, o tempo computacional seria N vezes
menor. No presente estudo, a computação paralela foi aplicada ao sim-
ulador de reservatórios UTCHEM e à biblioteca EFVLib. UTCHEM é um
simulador quími-co-composicional desenvolvido pela The University of
Texas at Austin. A EFVLib, por sua vez, é uma biblioteca desenvolvida
pelo laboratório SINMEC – laboratório ligado ao Departamento de En-
genharia Mecânica da Universidade Federal de Santa Catarina – cujo intu-
ito é prover suporte à aplicação do Método dos Volumes Finitos Baseado
em Elementos. Em ambos os casos a metodologia de paralalelização é
baseada na decomposição de domínio.
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Abstract

Numerical simulation is an extremely relevant tool to the oil and gas in-
dustry. It makes feasible the procedure of predicting the production sce-
nery in a given reservoir and design more advantageous exploit strategies
from its results. However, in order to obtain reliability from the numerical
results, it is essential to employ reliable numerical models and an accu-
rate geometrical characterization of the reservoir. This leads to a high
computational load and consequently the achievement of the solution of
the corresponding numerical method may require an exceedingly large
simulation time. Seemingly, reducing this time is an accomplishment
of great interest to the reservoir engineering. Among the techniques of
boosting performance, parallel computing is one of the most promising
ones. In this technique, the computational load is split throughout the set
of processors. In the most ideal situation, this computational load is split
in an egalitarian way, in such a way that if N is the number of processors
then the computational time is N times smaller. In this study, parallel
computing was applied to two distinct numerical simulators: UTCHEM
and EFVLib. UTCHEM is a compositional reservoir simulator developed
at The University of Texas at Austin. EFVLib, by its turn, is a computational
library developed at SINMEC – a laboratory at the Mechanical Enginering
Department of The Federal University of Santa Catarina – with the aim of
supporting the Element-based Finite Volume Method employment. The
parallelization process were based on the domain decomposition on the
both cases formerly described.
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CHAPTER

1
Introduction

1.1 Preliminaries

Large-scale reservoir simulations may demand high computational per-
formance and a huge amount of computer memory in order to be feasible
its use in reservoir engineering. A lot of effort has been made to improve
the computation performance. Better linear system solvers, multiscale
methods and other technics has proven to be very important for such
improvement. However, when a code is optimized, it becomes an arduous
job to achieve a great time reduction by simply enhancing the algorithms.
Thus, it is quite relevant to consider the hardware architecture in order to
make reservoir simulators faster.

One of the main parameters that interferes on the hardware perfor-
mance is the CPU frequency. As the frequency increases, more operations
can be performed and consequently the algorithm runs faster. Figure 1.1
shows the frequency of several processors along the years. It is clear that
the current processor architecture is saturating and hence no significant
performance gain may happen unless a radical architecture change is in-
troduced. Because of this, computer manufacturers adopted the strat-
egy of using several simple processors instead of a single and probably

1



2 INTRODUCTION

complex one. Each processor works only on a part of the problem and
the overall computational performance is given by the time consumed
by the most loaded processor.Employing a large number of processors
diminishes the problem size on which each processor works. Ideally, if
N processors are used, the code will run N times faster.

Figure 1.1 – Frequency in MHz of several processors along the years [22]

Parallel computer’s relevant features go beyond having more than
one processor, forasmuch as the amount of available memory is usually
much bigger. CPU clusters own a memory module for each node that is
contained by them. Consequently, a greater amount of memory becomes
available if a larger number of nodes is employed. This is of great interest
since a substantial number of simulation cases is unfeasible not due to a
running time constraint, but because their models are so complex that it
is not even possible to load them.

One should note, however, that using a parallel computer usually is
not enough to take the advantages of parallel computing. In fact, a code
originally conceived for serial computers may run even slower in a par-
allel computer since only a single – and probably simple – processor is
allocated. It is also necessary to program what operation each processor
should execute. Furthermore, an egalitarian division of the operations
optimizes the code performance. Otherwise, the overloaded processor
dictates the overall performance.



INTRODUCTION 3

The main purpose of this study is the parallelization of two distinct
simulation codes: UTCHEM and EFVLib. The University of Texas Chem-
ical Compositional Simulator (UTCHEM) is a three-dimensional, multi-
component, multiphase, compositional, variable temperature, finite-dif-
ference reservoir simulator developed at The University of Texas at Austin.
It can be used to simulate the enhanced recovery of oil and the enhanced
remediation of aquifers. Some of its features are modeling of capillary
pressures, three-phase relative permeabilities, dispersion, diffusion, ad-
sorption, chemical reactions, and non-equilibrium mass transfer between
phases [2]. UTCHEM is used worldwide and its parallelization will directly
benefit those who intend to run large and realistic reservoir simulation
cases with this simulator.

The second simulation code intended to be parallelized is a library
(EFVLib) in which the Element-based Finite Volume Method (EbFVM)
[17] is implemented. It was developed at SINMEC, a CFD laboratory from
The Federal University of Santa Catarina, at Florianópolis. This library
supports two and three-dimensional hybrid unstructured grids. In 2D,
the grid is composed by triangles and quadrangles and in 3D by hexahe-
drons, tetrahedrons, prisms, and pyramids. EFVLib handles grid’s oper-
ations, geometry, and topology in a user-friendly way. Also, it provides a
convenient environment to develop numerical methods in fluid mechan-
ics and heat transfer.

The motivation for parallelizing two softwares instead of just one is
that different aspect of the parallel computing will be contemplated. UT-
CHEM is a huge code with a lot of physical models, but the grid is struc-
tured, which simplifies the parallelization. EFVLib, on the other hand, is
a much smaller code and does not require the validation against several
physical cases, since those cases are implemented by the final user. The
grid however is unstructured and the calculation of fluxes is much more
complex.

1.2 Objectives

The main objectives of this study are

• Parallelize UTCHEM;

• Parallelize EFVLib.
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These objectives may be split into the following secondary objectives:

• Define an efficient methodology to divide the computational load
among the available processing units;

• Search and make usable external resources that may help to execute
in parallel some of the required simulation steps;

• Since Linux is the usual operation system of cluster of CPU’s and
EFVLib was implemented in Windows, adapt EFVLib to a Linux plat-
form;

• Validate both UTCHEM and EFVLib parallel versions against bench-
mark cases;

• Evaluate the performance gains achieved using parallel processing.

1.3 Organization of the study

In chapter 2 has some basic concepts about parallel computing, including
software and hardware matters. Chapter 3 introduces UT-CHEM’s main
features and its mathematical formulation. In chapter 4 the Element-
based Finite Volume Method (EbFVM) is discussed. In chapter 5 it is briefly
described the domain decomposition methodology used to distribute the
computational load among processors. It is also described the inactive
grid blocks methodology and the new UTCHEM’s input file format. Be-
sides, it also gives some highlights of the EFVLib code itself and presents
some other details. Chapter 6 contains the results achieved and its anal-
ysis.



CHAPTER

2
Parallel Computing

2.1 Introduction

It is quite hard to rigorously define what is parallel computing. Such area
includes aspects related to algorithms, applications, programming langua-
ges, operating system, and computer architecture. All of these aspects
must be specialized in order to provide support for computations that
involve more than one processor [21]. The motivation to use more than
one processor comes from the fact that nowadays it is worthless trying to
improve computer performance adopting a single processor. Such pro-
cessor would consume too much power and a very sophisticated refrig-
eration system would be required to dissipate the heat generated. It is
much more practical to exploit several simple processors to attain the
same desired performance [10]. In fact, as the trend of parallel computers
spreads, launching a single processor in these newer computers makes
serial algorithms run even slower than they would in a serial machine.

Seemingly, the main motivation of parallel computing is to speed up
computations. With the nowadays computer technologies, it is quite easy
to acquire and store huge amounts of data. However, process that data
is something that, if performed by a single processor, would require a

5
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prohibitively long time [23]. In this context, the basic idea of parallel com-
puting is to split the job among several processors. Each one of them
works concurrently only in a small segment of the problem. Besides, they
communicate between themselves in order to achieve the expected result.

The natural way to analyze a parallel algorithm is comparing it to
the best approach that solves the same problem in a sequential scenario.
Single-processor computers usually adopt the architecture illustrated in
Figure 2.1. Throughout its calculations, only a single sequence of instruc-
tions and data can be processed at a time by its sole process unit. The
control unit, in its turn, is aware of the operation that must be executed
and by this knowledge it sets the operands. Furthermore, the control
unit recognizes the available variables, although it cannot inform its val-
ues. Hence, to enable a complete loading of the desired data into the
processor’s internal registers the memory access creates a path between
the memory and the processor. Such design is commonly referred to as
Random Access Machine [23].

Process
Unit

Input
Unit

Output
Unit

Memory

Control

Instructions

Data

Figure 2.1 – Common architecture of sequential computers (adapted
from [23])

When more than one processor is addressed to execute a job, the
way it might be performed may differ greatly from the traditional concept
of sequential computing. From the algorithm standpoint, the problem
is divided into subproblems, each one solved concurrently by a single
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processor. Those processors might communicate between themselves in
order to yield the final result. However, there are important architecture
issues that might interfere in the way that the program is parallelized,
such as the arrangement of memory and processors, the possibility of
executing different tasks in distinct processors, the processors’ commu-
nication system, and the processors’ operation (synchronously or asyn-
chronously) [23]. The following two sections are intended to discuss the
algorithms’ task dependency and parallel architectures, respectively. In
particular, labelling the algorithms according to its task dependencies is
quite convenient, once that will be useful to recognize which parts of
UTCHEM and EFVLib may be efficiently parallelized.

2.2 Algorithm classi�cation

The algorithm classification adopted here – the same as in [10] – is based
on task dependencies. According to this classification, there are five types
of algorithms:

1. Serial algorithms;

2. Parallel algorithms;

3. Serial-parallel algorithms;

4. Nonserial-parallel algorithms;

5. Regular iterative algorithms.

The following subsections expose briefly the types mentioned above.

2.2.1 Serial algorithms

Serial algorithms are those that require a sequential execution of their
tasks. Due to the data dependency, launching a new task depends on
finalization of the previous one. Hence, a synchronously running is not
possible and thus no gain is obtained by exploiting several processor uni-
ties.
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2.2.2 Parallel algorithms

Opposed to the previous type, parallel algorithms have tasks that share
no data dependency between each other. Thus the tasks are independent
at such degree that they can be executed concurrently by several proces-
sor unities. Moreover, the overall performance of parallel algorithms are
limited by the overloaded processor.

2.2.3 Serial-parallel algorithms

Serial-parallel algorithms may have their tasks grouped in stages. Each
stage can have its tasks executed in parallel, but the stages themselves
must be executed sequentially. It is clear that if there is only one stage,
then the algorithm is parallel. On the other hand, if each stage has a single
task, the algorithm is serial.

2.2.4 Nonserial-parallel algorithms

A nonserial-parallel algorithm (NSPA) cannot be put in the above classes
because its workflow follows no pattern at all. According to [10], an NSPA
graph is characterized by two types of constructs: nodes, which corre-
sponds to the algorithm tasks, and directed edges, which describes the
direction of the data flow among the nodes. The graph provides important
information, such as the work – amount of work to complete the algo-
rithm –, the depth – maximum path length between any input node and
any output node –, and the degree of parallelism – maximum number of
nodes that can be processed in parallel.

2.2.5 Regular iterative algorithms

Regular iterative algorithms are designed by a fixed pattern. Identifying
this pattern can be an arduous job, though. Such algorithms are the most
difficult to be parallelized, but they deserve special attention due to their
ample presence in fields such signal, image and video processing, linear
algebra, and numerical simulation.
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2.3 Parallel architectures

The approach used to make an algorithm parallel is strictly related to the
multiprocessing architecture. It is crucial to choose a processor architec-
ture that is sufficiently qualified to perform the algorithm’s instructions
assuring reliability. Furthermore, the processors must communicate be-
tween themselves using some kind of interconnection network that, if not
fast enough, might be the bottleneck for the software performance. Thus,
if the interconnection network is known to have poor quality, reducing
data exchange between processors is a pivotal aim for the algorithm de-
sign. Besides the processor architecture, the memory system may also
be taken into account. The memory modules might be shared among
the processors so that all of them are able to access the global data. On
the other hand, it is also possible to dedicate a memory module to each
processor. In this case, each processor has only a part of the global data
and as a consequence data needs to be communicated between memory
modules via an interconnection network. If some data is updated in a
processor unit, all of the other ones must be informed somehow in order
to have the correct values [10].

Regarding multiprocessing architectures, this study will focus in three
of the main types:

• Shared-memory;

• Distributed-memory;

• Hybrid-memory.

The above classification relies on how the memory resources are available
to the processors. In the following sections the types above will be briefly
described.

2.3.1 Shared-memory architecture

In a shared-memory architecture, all processors share a common mem-
ory address space and implicitly communicate between themselves via
memory. Usually they have local caches and are interconnected not only
with each other, but also with the common memory through an inter-
connection (a bus, for example) [21]. In general such architectures are
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symmetric, which means that all processing units are equal, nevertheless
they also might be asymmetric.

In Figure 2.2 a symmetric shared-memory architecture is schema-
tized. Despite the fact that in that figure all processors are connected
to a single memory module, there might be several memory modules.
Employing a bank of memories increases the overall computational per-
formance since only one processor may access a given memory at a given
time. That is, a bank of memories allows the simultaneously execution of
several read/write memory operations [10].

Figure 2.2 – Ilustration of a shared memory parallel computer.

According to [10], programming for shared-memory multiprocessors
is not difficult, since all memory read operations are hidden from the
programmer and hence can be coded as a serial code. Memory write
operations, on the other hand, might require locking the data access until
a thread has finished the work on it. It is necessary to identify the criti-
cal code sections and synchronize the processors in order to assure data
integrity. Libraries based on OpenMP directives – discussed later – are
commonly used to handle synchronization and other related operations.

The main disadvantage regarding shared-memory architectures is
their incapability of scaling to a large number of processors [7]. Gener-
ally the bus-based systems are limited to at most 32 processors, while
those based on crossbar switch can achieve as many as 128 processors.
However, in the latter case the switch cost increases with the square of
the number of processors. If a computer with a exceedingly large num-
ber of processors were to be built, this incremental cost would make its
construction unfeasible.
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2.3.2 Distributed-memory architecture

Scalability limitations of shared memory systems led the development of
distributed-memory parallel computers. Instead of a huge global mem-
ory, each processor owned by that machine is connected to a smaller local
memory, so that the memory access can be done faster than a shared-
memory computer would be able to perform it [7]. This structure is also
classified as non-uniform – Non-uniform Memory Access (NUMA) –,
since it depends on which memory a given processor attempts to access
[10].

Distributed-memory computers resort to an interconnection
network in order to provide an adequate communication among the pro-
cessors, as illustrated in Figure 2.3. Data are sent from a processor mem-
ory module to another via a message passing (MP) mechanism. The Mas-
sage Passing Interface (MPI) may be used as a language-independent
message protocol [7]. Aiming the improvement of the overall computa-
tional performance, data should be carefully placed in the memory mod-
ules in order to lessen the number of messages exchanged between the
processors themselves.

Figure 2.3 – Ilustration of a shared memory parallel computer.

2.3.3 Hybrid-memory architecture

Hybrid-memory architecture combines paradigms from shared and dis-
tributed memory. In massively parallel processing this architecture is of-
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ten termed SMP cluster. Its structure is similar to a distributed-memory‘s
arrangement, although in the hybrid case each node is a shared-memory
system. This configuration takes advantage of both memory architec-
tures, since it allows not only high parallel efficiency within a node but
also scaling the program to a large number of processors.

Figure 2.4 – Ilustration of a shared memory parallel computer.

2.4 Application Programming Interfaces

An Application Programming Interface (API) is a set of routines, proto-
cols, and tools that assist the development of software applications. For
parallel softwares, the most common APIs are the Open Multi Processing
(OpenMP) and the Message Passing Interface (MPI) [8]. The former is
used in shared-memory parallel computers; the latter, in both shared and
distruted-memory machines. Besides, those APIs can be used together in
hybrid memory computers, as discussed in the previous section. In the
following subsections each one of them explained.

2.4.1 OpenMP

OpenMP is an API employed in shared-memory computers. It is com-
posed by a set of compiler directives and environmental variables. Ad-
ditionally, it also includes a runtime library, which may be used to imple-
ment the desired parallelism. OpenMP is suitable to parallelize sequential
programs implemented in C, C++ or Fortran [21].
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OpenMP is considered a high level API. This means that the program-
mer does not need to worry about too many technical details, such as data
decomposition and flow control, which are left to the compiler. The pro-
grammer only needs to use OpenMP directives to indicate what portions
of the code must be executed in parallel. If a compiler does not support
OpenMP, then the directives will be interpreted as comments and thus
ignored. Hence, the application is simultaneously sequential and parallel.

OpenMP does not require a whole parallelized code. That is, it allows
an incrementally parallelization. One may progressively parallelize a se-
quential code until the desired performance is achieved. It is also worth
noting that the collection of OpenMP directives is relatively small, which
means that the programmer does not need to learn a whole new language
in order to use them [21].

2.4.2 MPI

The Message Passing Interface (MPI) is proposed as a standard specifi-
cation for message-passing. Nowadays MPI is the leading programming
language employed in highly scalable programs [21]. It treats communi-
cations among processors explicitly and for this reason may be used in
both shared and distributed-memory parallel computers.

In the message-passing model, the processors communicate between
each other by sending messages through a two-sided operation: a pro-
cessor must send a message, while another one needs to recieve it. A MPI
message consist of two parts: the envelope and the message body [20].
The envolpe has four parts:

• Source: the processor that sends the message;

• Destination: the processor that receives the message;

• Communicator: the group of processors to which both source and
destination processors belong;

• Tag: marker used to distinguish between different message types.

The message body, by its turn, is composed of the three following parts:

• Buffer: the data to be sent;

• Datatype: type of the message data;
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• Count: number of items in the buffer.

Almost all message-passing operations can be done using send/recieve
operations (point-to-point operations). However, some operations that
involve all processors. This kind of operation is common to such a de-
gree that MPI provides routines (collective communication routines) to
execute them. Some of these routines are [20]:

• Barrier synchronization;

• Broadcast from one processor to all the other ones;

• Global reduction operations, such as max, min, and sum;

• Gather data from all processor to a single one;

• Scatter data from a single processor to all the other ones.

2.5 Parallel e�ciency and theoretical limits

One of the most common metric to measure the benefits of parallel com-
puting is the speedup. The speedup is simply defined as the ratio of the
times required to run a program with a single and multiple parallel pro-
cessors. If T1 and TN denotes the time consumed by one and by N pro-
cessors, respectively, then the speedup achieved is

SN =
T1

TN
. (2.1)

Ideally, if the code is fully parallelized, there is no overloaded processor.
Furthermore, in the ideal case the communication time between proces-
sors and memory are negligible, the speedup is linear [10], which means

SN =N . (2.2)

In general, however, the speedup is sub-linear, since the conditions above
rarely are respected. There are situations, on the other hand, in which the
speedup is greater than the linear speedup (super-linear speedup). This
might happen, for example, if searching operations are important or due
to hardware issues [8].
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Another common metric used for parallel computing is the parallel
efficiency. It is defined as the speedup divided by the number of proces-
sors [21]:

EN =
SN

N
. (2.3)

The parallel efficiency may be used to measure the scalability of a pro-
gram. Given a chosen level of efficiency and a number of processors, it
apprises the size of the problem to be solved.

There are theoretical limits for the speedup. According to Amdahl’s
Law, an algorithm is composed by a parallizable fraction f and by a serial
fraction 1− f . Considering that the execution of the parallizable fraction
is N times faster when N processors are used, the time needed for the
code execution is

TN = f
T1

N
+ (1− f )T1. (2.4)

The theoretical speedup is thus

SN =
T1

TN
=

1

f /N + (1− f )
(2.5)

and the maximum speedup according to Amdahl’s Law is

Smax = lim
N→∞

SN =
1

1− f
. (2.6)

Figure 2.5 displays some speedup’s curves and its behavior due to varia-
tions in the number of processors and parallelizable fractions.

Another popular law for the theoretical speedup is the Gustafson-
Barsis’s. It states that the parallelism increases as the problem size in-
creases [10]. This law differs from the Amdahl’s Law, in which the parallel
fraction is constant. In the Gustafson-Barsis’s formula, the time of execu-
tion in parallel is taken as the reference. The time for execution in serial
is thus

T1 = (1− f )TN + f N TN , (2.7)

which gives the theoretical speedup

SN = 1+ f (N −1). (2.8)

Figure 2.6 exhibits the theoretical speedup for the same parallel fractions
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Figure 2.5 – Theoretical speedup according to Amdahl’s Law.

used in Figure 2.5. It is important to point out that the Gustafson-Barsis’s
Law is much less pessimistic than Amdahl’s.
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Figure 2.6 – Theoretical speedup according to Gustafson-Barsis’s Law.





CHAPTER

3
UTCHEM Reservoir Simulator

3.1 Introduction

UTCHEM is a three-dimensional, multicomponent, multiphase, compo-
sitional, variable temperature, finite-difference reservoir simulator devel-
oped at The University of Texas at Austin. It can be used to simulate en-
hanced recovery of oil and enhanced remediation of aquifers. Some of
its features are the modeling of capillary pressures, three-phase relative
permeabilities, dispersion, diffusion, adsorption, chemical reactions, and
non-equilibrium mass transfer between phases [2]. Moreover, for ground
water its features are:

• NAPL spill and migration in both saturated and unsaturated zones;

• Partitioning interwell test in both saturated and unsaturated zones
of aquifers;

• Remediation using surfactant/cosolvent/polymer;

• Remediation using surfactant/foam;

• Remediation using cosolvents;

19
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• Bioremediation;

• Geochemical reactions.

For oil reservoirs:

• Waterflooding

• Single well, partitioning interwell, and single well wettability tracer
tests;

• Polymer flooding;

• Profile control using gel;

• Surfactant flooding;

• High pH alkaline flooding;

• Microbial EOR;

• Surfactant/foam and ASP/foam EOR.

In UTCHEM, the mass and energy equations are solved for an arbi-
trary number of chemical components. There may be up to four fluid
phases – air, water, oil, and microemulsion – besides an arbitrary number
of solid minerals. The transport equations are discretized using a finite
difference scheme and are solved via an IMPEC method, which solves
the aqueous phase pressure equation implicitly and the concentration
equations explicitly. In the following section the UTCHEM mathematical
model will be briefly described following the guidelines presented in [12].

3.2 Mathematical formulation

The main equations to be solved are the aqueous phase pressure, the
concentration, and the energy equations. Moreover, the aqueous phase
pressure equation is the only one solved implicitly. It is obtained by sum-
ming all the concentration equations of the volume-occupying compo-
nents. The pressure of the other phases is computed adding the capillary
pressures between the other phases. The knowledge of the pressure field
is a sufficient requirement in order to solve all the other equations.
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The mass equation of a component κ in a porous media is given by

∂

∂ t

�

φC̃κρκ
�

+∇·

� np
∑

l=1

ρκ
�

Cκ,l ~ul − ~Dκ,l

�

�

= R̄κ, (3.1)

where C̃κ is the concentration of component κ over all phases, including
the adsorbed ones. Mathematically,

C̃κ =

�

1−
nv c
∑

c=1

Ĉc

� np
∑

l=1

Sl Clκ+ Ĉκ, (3.2)

where np is the number of phases; nv c is the number of volume-occupying
phases, Sl is the saturation of phase l , and Clκ is the concentration of com-
ponent κ in phase l , and Ĉ is the adsorbed concentration. In Equation
(3.1), φ is the media porosity. It is assumed that it changes linearly with
the pressure according to the expression

φ =φ0(1+Cr (P −P0)), (3.3)

whereφ0 is the referential porosity, evaluated at pressure P0, and Cr is the
rock compressibility, which is supposed to be constant.

Still referencing Equation (3.1), ρκ represents the ratio between the
density of the pure component κ at reservoir conditions and its density at
standard conditions. It is modelled according to the expression

ρκ = 1+C o
κ (P −Pstd), (3.4)

where C o
κ is the component compressibility, also supposed constant. ~Dκ,l

is the dispersive flux, which is assumed to have a Fickian form, while ~ul

is the superficial velocity. It is assumed that the superficial velocity obeys
Darcy’s Law:

~ul =−λlK · (∇Pl −γl∇h ). (3.5)

λl is the phase mobility, given by the expression,

λl =
kr,l

µl
, (3.6)

where kr,l is the phase relative mobility and µ is the phase viscosity, K
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is the medium absolute permeability, Pl is the phase pressure, γl is the
phase specific gravity, and h is the vertical depth.

The source term R̄κ in Equation (3.1) is composed by a the rate of
injection/production of component κ plus the rate of consumption/pro-
duction of κ in chemical reactions. It is expressed by

R̄κ =φ
np
∑

l=1

Sl rκl + (1−φ)rκs +Q̄κ. (3.7)

rκl and rκs are the reaction rates in phase l and in the solid phase. Q̄κ, on
the other hand, is the rate of production/injection of κ due to neighbour-
ing wells.

Summing Equation (3.1) for each volume-occupying component the
component concentrations cancel out. The resulting equation is, then:

φrefCt
∂ P1

∂ t
+∇·(λT cK ·∇P1) =∇·

� np
∑

l=1

λl cK · (∇Pc p 1−γl∇h )

�

+
nv c
∑

c=1

Q̄c . (3.8)

In the above equationλl c includes the correction for fluid compressibility.
It is given by

λl c =
kr l

µl

nv c
∑

κ=1

ρκCκl . (3.9)

The total relative mobility by its turn is given by

λT c =
np
∑

l=1

λl c . (3.10)

Finally, the total compressibility Ct is the volume-weighted sum of the
rock (Cr ) and component (C o

κ ) compressibilities:

Ct =Cr +
nv c
∑

κ=1

C o
κ C̃κ (3.11)

The main equations to be solved are the (3.1) and the (3.8). Equation
(3.8) is solved implicitly, which implies that a linear system must be solved
in order to obtain the aqueous phase pressure field. From those calcula-
tions arises the solution of Equation (3.1) for each component, solution
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from which the concentration fields are obtained. The knowledge of the
pressure and concentrations enables determining all the other variables.
It’s noteworthy that a discourse about physical and chemical models im-
plemented in UTCHEM would be an out-of-scope topic for this study.
Hence, it’ll not be included in this description. For a complete description
of UTCHEM and its features it is recommended to consult [2].

3.3 Grids

Despite UTCHEM having a version supporting unstructured grids, struc-
tured grids are still the most used kind of grid in this simulator. The UT-
CHEM’s version received for this work had originally three types of coor-
dinate system: Cartesian, radial, and curvilinear. The radial system was
implemented to study the flow near the wellbore. The flow is assumed to
be plenty radial and thus the domain is divided only in the radial direction
r and in the vertical direction z . This type of coordinate system does not
take advantage of the parallelization of the code because the division of
the grid described in Chapter 5 is in the y direction, which is not associ-
ated to any of the radial system axes. The curvilinear coordinate system
implemented in UTCHEM is basically a two dimensional curvilinear grid
in the x − z plane extruded in the direction y . Besides these three types
of grids, an implementation of a corner-point grid was moved from an-
other version of UTCHEM to the version of this work and it was further
parallelized.





CHAPTER

4
The Element-based Finite Vol-

ume Method

4.1 Introduction

Finite Volume Methods (FVM) are numerical methods used for solving
differential equations derived from the application of conservation laws.
The customary approach to deduce those equations consists in applying
a balance of a given property to a control volume. Then, assuming that
its size tends to zero leads to a differential equation. Instead of using
the differential equations directly, the Finite Volume Method takes a step
back and utilize the prior balance equations. This procedure assures the
method’s conservative character.

The Element-based Finite Volume Method (EbFVM) is a Finite Vol-
ume Method that applies some Finite Element Method (FEM) concepts
in order to provide to provide more geometrical flexibility to the Finite
Volume Method. It allows applying the control volume approach to a
unstructured grid. This study intends to use triangular and quadrangular

25
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elements in two-dimensional grids and tetrahedron, hexahedron, square-
based pyramid, and triangular based prism elements in three-di-mensional
grids. These grids are unstructured, which means that there is no pre-
defined rule to associate an element with its neighbors [16]. Figure 4.1
shows how such grids may provide a good discretization of geometrically
complex reservoirs.

x y

z

Reservoir

(tetrahedrons)

Geological fault 

(Prisms and hexahedron)

Near-well region

(prisms and hexahedrons)

Figure 4.1 – Discretization of an hypothetical reservoir using a unstruc-
tured grid (adapted from [17])

4.2 Grid entities

A grid is a collection of geometrical entities Ωi such that for a domain Ω

⋃

i

Ωi =Ω. (4.1)

Each Ωi has a nonempty interior, but the interior of the intersection of Ωi

and Ω j , with i 6= j , is empty [11]. The entities Ωi are called the elements
of the grid [16]. Here, it is considered that in two-dimensional domains
the elements may be triangles or quadrilaterals. In three-dimen-sional
domains, on the other hand, there may be tetrahedra, hexahedra, square-
based pyramids, or triangle based prisms. If a grid has elements of differ-
ent types, the grid is called hybrid. One may note that this broadens the
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scope of Cartesian grids, in which only rectangles and parallelepipeds are
used.

The contour of the elements is formed by entities here called facets.
Facets are edges in 2D elements and surfaces in 3D elements. If a facet
is not at the boundary of the domain, then always exist two elements
sharing that facet. Hence, it is not possible partial contact between facets,
that is, the grid is conformal. A more precise definition of conformal grids
may be found in [11].

The term face are let to geometrical entities that delimit the control
volumes. In 2D they are the segments that connect the edges’s midpoints
to the element centroids, as illustrated in Figure 4.2. In 3D the definition
is analogous and may be found in [11]. The faces divide the element into
smaller regions called subelements, each one associated to a vertex. Fig-
ure 4.2 illustrates the main grid entities of a triangular element.

Face

Facet
Vertex Centroid

Subelement

Figure 4.2 – Main entities of a triangular element

In the EbFVM, the unknowns of the problem are associated to ele-
ments’ vertices, also named nodes. The control volumes are assembled
from subelements surrounding the nodes, as illustrated in Figure 4.3. As
a consequence, the control surfaces are formed by the faces themselves.
Regarding that geometrical arrangement, it is quite convenient to sup-
pose that physical properties such as permeability are homogeneous in-
side an element. Therefore, no interpolation scheme is required to eval-
uate them at the surface of the control volumes [6].
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Control Volume

Node

Control Surface

Figure 4.3 – Control volume creation

4.3 Numerical scheme

An EbFVM common approach to handling geometrical distortion of the
elements in a grid is the transformation known as mapping. It maps each
element from the global coordinate system to a local coordinate system
in which the element has a regular representation. Figure 4.4 illustrates
a triangle element being mapped to a transformed space represented by
the coordinates (ξ,η). As it will be demonstrated later, this procedure
simplifies the discretization of the modelling equations.

V1

V2

V3

V1=(0,0)

V =(1,0)2

V3=(0,1)

ξ

η

x

y

Figure 4.4 – Mapping into a transformed space

The mapping from global to local coordinate systems are performed
using first order shape functions from the FEM. For every vertex i of an
element there is a shape functionNi which is 1 at i and 0 at all the other
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vertices. In such manner, each point p = (x , y , z )may be represented as

p =
nv
∑

i=1

Ni (ξ,η,ζ) pi , (4.2)

where pi , i = 1, ..., nv , represents the element’s vertices, nv the number of
vertices, and (ξ,η,ζ) the local coordinates of P . The shape functions must
be continuous, differentiable, and partitions of the unity, so that they are
positive and obey the relation

nv
∑

i=1

Ni (ξ,η,ζ) = 1 (4.3)

for any point (ξ,η,ζ) in the local coordinate system [24].

Let ϕ be a function defined over the grid nodes (vertices of the el-
ements). The EbFVM proposes that the value of ϕ inside an element is
given by the relation

ϕ(x , y , z ) =
nv
∑

i=1

Ni (ξ,η,ζ) ϕi . (4.4)

Analyzing the properties of the shape functions shown above, one may
realize that the value of ϕ inside an element is an average of its values at
the element vertices and the weight is given by the shape function. This
is actually consistent, onceϕ will not be higher than the maximum value
at a vertex nor lower than its minimum value.

Since shape functions are differentiable, the gradient of ϕ in the
global coordinate system may be expressed as

∇ϕ =∇

� nv
∑

i=1

Ni (ξ,η,ζ) ϕi

�

=
nv
∑

i=1





∂xNi

∂yNi

∂zNi



ϕi =





∂xN1 ∂xN2 · · · ∂xNnv

∂yN1 ∂yN2 · · · ∂yNnv

∂zN1 ∂zN2 · · · ∂zNnv



Φe , (4.5)

where
Φe =

�

ϕ1 ϕ2 . . . ϕnv

�T
(4.6)
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is a vector with the values ofϕ at the element vertices. However, the shape
functions are usually given in terms of the local coordinates and thus the
derivatives ofNi with respect to the global coordinates are inconvenient.
Applying the chain rule,





∂ξNi

∂ηNi

∂ζNi



=





∂ξx ∂ξy ∂ξz
∂ηx ∂ηy ∂ηz
∂ζx ∂ζy ∂ζz









∂xNi

∂yNi

∂zNi



 . (4.7)

The matrix

J =





∂ξx ∂ξy ∂ξz
∂ηx ∂ηy ∂ηz
∂ζx ∂ζy ∂ζz



 (4.8)

is the well-known Jacobian matrix [11] and may be computed using Equa-
tion (4.2). Defining

D ≡





∂ξN1 ∂ξN2 · · · ∂ξNnv

∂ηN1 ∂ηN2 · · · ∂ηNnv

∂ζN1 ∂ζN2 · · · ∂ζNnv



 , (4.9)

Equation (4.5) may be expressed as

∇ϕ = J −1D Φe . (4.10)

Matrix J −1D may be interpreted as a discrete gradient operator.

4.4 Discretization of a conservation equation

According to [16], the conservation equation of a generic property ϕ as-
sociated to a fluid flowing may be written as

∂

∂ t

�

ρϕ
�

+∇·
�

ρuϕ
�

=∇·
�

Γ∇ϕ
�

+Q , (4.11)

whereρ is the specific mass, u is the fluid velocity, Γ is a diffusivity coeffi-
cient, and Q is a source term associated to the propertyϕ. The discretiza-
tion in a FVM is performed integrating the above equation in each control
volume. Consider a control volume Ψ as the one illustrated in Figure 4.3.
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Noting that the grid is static, the first integral becomes

∫

Ψ

∂

∂ t

�

ρϕ
�

dV =
∂

∂ t





∫

Ψ

ρϕ



=
∂

∂ t

�

MΨϕ̄Ψ
�

≈
∂

∂ t

�

MΨϕΨ,n

�

, (4.12)

where MΨ is the mass contained inΨ and ϕ̄Ψ is the average value ofϕ inΨ.
Such average value was approximated by the value ofϕ at the node itself,
which is a reasonable approximation since the node is usually closed to
the center of the control volume. The discretization of the source term is
similar and gives

∫

Ψ

Q dV ≈QΨ,n VΨ , (4.13)

noting that VΨ is the volume of Ψ.

The second term of Equation (4.11) models the advective transporta-
tion of ϕ. Integrating and applying the divergence theorem

∫

Ψ

∇·
�

ρuϕ
�

dV =

∫

∂ Ψ

(ρu · n̂)ϕdA =
∑

f

∫

∂ Ψ f

(ρu · n̂)ϕdA. (4.14)

Approximating the average value of the integral above by the value of the
center of each face result

∫

Ψ

∇·
�

ρuϕ
�

dV ≈
∑

f

�

ρu ·∆A f

�

ϕ f =
∑

f

ṁ f ϕ f , (4.15)

where ṁ f is the mass flow rate crossing the face f . It would be intu-
itive to evaluate ϕ f using Equation (4.4). However, this is usually not
recommended because the method may become numerically unstable.
Upwind-like methods are preferably, despite they may introduce numer-
ical diffusion to the solution obtained [16].

The last term from Equation (4.11) to be integrated is the diffusive
term. Integrating and applying the divergence theorem again:

∫

Ψ

Γ∇ϕdV =

∫

Ψ

(Γ∇ϕ) · n̂dA ≈
∑

f

(Γ∇ϕ) f ·∆A f . (4.16)
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Using the discrete gradient operator defined in Equation (4.10),

∫

Ψ

Γ∇ϕdV ≈
∑

f

�

Γ J −1D Φe

�

f
·∆A f . (4.17)

The stencil of a numerical method is defined as the set that contains
all the nodes that are involved in the discrete equation of a given node. Re-
garding the four terms of Equation (4.11) discretized previously, only two
of them use values at neighbor nodes: the advection – Equation (4.15) –
and the diffusive – Equation (4.17) – terms. According to those equations,
in the EbFVM context, the stencil is all the nodes that share an element
with the given node. Figure 4.5 illustrates the stencil of a general node p .

P

n1
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n3

n4

n5

n6

n7

Figure 4.5 – Stencil of p



CHAPTER

5
The Proposed Approach

5.1 UTCHEM

Aiming a performance improvement, the methodology adopted in the
parallelization process must lay its focus on UTCHEM’s operations that
require the most significant part of the computational efforts. Evidently,
refined grids employed in large and/or complex domain simulations are a
relevant matter. This fact motivated employing a domain decomposition
based methodology. The reservoir grid is divided among the available
processors. Each one of them works in only a part of the domain, while
MPI routines are in charge of the communication. Since all implementa-
tions are based on MPI routines, the code is fully functional for the most
general parallel architecture: hybrid-memory architecture. As a conse-
quence, UTCHEM can run in parallel not only in CPU clusters, but also
in personal computers. The use of the IPARS Framework (described in
Section 5.1.3) made viable the introduction of a new input file format
for the simulator. This format is more user friendly and error prone, as
described in Appendix A.

33
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5.1.1 Domain decomposition

UTCHEM’s parallelization applies only to structured grids. A structured
grid has such an organization that is completely defined by the number
of grid blocks on each coordinate direction and their dimension. Here it
is supposed, without losing generality, that the grid is Cartesian and we
denote the number of grid blocks on each direction by Nx , Ny , and Nz ,
related to the directions x , y , and z , respectively.

Seemingly, the main target in parallelization is improving computa-
tional performance. In order to achieve that goal, it’s crucial to decom-
pose the domain in such a way that each processor take care of almost
the same number of grid blocks. That is, overloaded processors must be
avoided. Furthermore, dividing a structured grid is much easier than an
unstructured one, since its topology is strictly dependent of the coordi-
nate system. To each block is associated a topological coordinate (i , j , k ),
which represents its localization indexes along the directions x,y and z,
respectively. The division applied in this study occurs, in fact, along the
directions y and z (does not depend on x). The pivotal reference in the
decomposition procedure is the j direction. The k one, on its turn, is
regarded as a layer. For each layer, then, is necessary to define the range in
the j direction. This can be done by two numbers, namely jP − and jP + in
the following way: if a grid block S has topological coordinates (iS , jS , kS )
and jP − ≤ jS ≤ jP + , then S is in the domain of processor P . One may note
that this procedure could be simplified by limiting the division solely to
the y direction. This is not recommended since depending on Ny and on
the number of processors the load balance might be not good enough.
Hence, the values of jP − and jP + may change according to the topological
coordinate k . For example, if a 3x3x2 case will be simulated with two
processors, the first processor may take the first two grid blocks of the y
direction in the first horizontal layer, but only one in the last one. The grid
thus is equally divided: each processor works on nine grid blocks. Figure
5.1 exemplifies a grid division.

In UTCHEM there is an important variable named NBL. It was used to
store the total number of grid blocks. In the Parallel UTCHEM, this would
not make sense anymore, given that each processor sees only a part of the
reservoir domain. Now NBL stores the number of local active grid blocks
(inactive grid blocks will be discussed in the following section). The size of
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Figure 5.1 – Example of a grid division

grid-dependent arrays is set to be precisely NBL. As a consequence, grid-
related operations do not need to be modified at all. There is however an
exception: if a grid-related array is used in a stencil computation (compu-
tation that requires values at neighbor grid blocks), values at grid blocks
that do not belong to the current processor domain may be needed. For
such variables a continuous indexing such that the one that starts in 1
and ends in NBL is not feasible. In this case, a coordinate-based index-
ing was applied: each processor domain is extended so that it contains
grid blocks of other processor domains. The additional grid blocks are
called ghost cells and no computation is performed for them. They are
used only to store values from other processor domains. Values at ghost
cells are updated using MPI routines every time stencil computations are
performed. In Figure 5.2 ghost cells are illustrated.

Grid-dependent arrays with continuum indexation will be labeled
here as type 1, while the others will be labeled as type 2. The indexes of a
type 2 array are named I1, J1, and K1, which are related to the directions
x , y , and z . The range of I1 is from IL1 to IL2, while the range of K1 is
from KL1 to KL2. For J1 the range is from JL1V(K1) to JL2V(K1). One must
note that the range of J1 depends on the local coordinate K1, reflecting
the nature of the grid division. Because of the changing in the indexation
of some grid-dependent arrays, every loop of UTCHEM in which type 2
arrays are used must be changed from continuum to coordinate based,
as illustrated in Figure 5.3. If the continuum index is needed but the loop
is coordinate-based, then the continuum index may be accessed using
the variable IJKPOS. Due to inactive grid blocks, explained in the follow-
ing section, the opposite can not be performed: access the coordinate
indexes I1, J1, and K1 from a continuum index I.
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Figure 5.2 – Example of ghost cells from a 6x8x3 grid

Figure 5.3 – Loop modification when type 2 arrays are presented

5.1.2 Inactive grid blocks

Inactive grid blocks are characterized by very low porosity and perme-
ability such that the fluid flow through them is negligible. They facilitate
an accurate description of a reservoir geometry using a structured grid,
such as a cartesian or a corner-point grid. Figure 5.4 illustrates a case in
which some grid blocks were set as inactive (those in grey), adjusting the
grid’s geometry to the reservoir’s shape. In UTCHEM’s previous versions,
inactive grid blocks were kept in almost all computation. It was assigned
to them small values – but not null, due to convergence problems – of
porosity and permeability and they were supposed to be fully saturated by
water. Sometimes, however, using them in computations may be physi-
cally inconsistent (e.g. computation of concentration derivatives).

Along the parallelization process, the same approach used in [8] was
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Figure 5.4 – Example of inactive grid blocks been used to better describe
a reservoir domain

implemented: excluding inactive grid blocks from all computations. This
is automatically done in type 1 arrays because their size is equal to the
number of active grid blocks (inactive grid blocks do not have a contin-
uum index). For type 2 arrays, on the other hand, a variable named KEY-
OUT is used to indicate if a grid block is active or not. KEYOUT is a type
2 array that has the value 1 at active grid blocks, 0 at inactive grid blocks,
and -1 at ghost cells. If a grid block has KEYOUT 1, then it is an active
grid block. If KEYOUT is -1 the grid block is a ghost cell and if KEYOUT
is 0 the grid block is inactive. Hence, before each computation the value
of KEYOUT is verified, as described in Figure 5.3. For stencil computa-
tions, inactive grid blocks are treated as impermeable boundaries and a
proper methodology is applied in every case. For example, if a concentra-
tion derivative needs to be computed but there is a neighbor grid block
that is inactive, a central difference scheme will substituted by a forward
or backward difference scheme, as it is performed near to the reservoir
boundaries.

5.1.3 IPARS framework

UTCHEM was parallelized with support of the IPARS framework. IPARS
provides several routines that facilitate good strategy execution of parallel
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related operations. For example, it has routines to divides the grid accord-
ing to the number of processors, update type 2 array values at ghost cells,
and measure the execution time expended by each processor. Figure 5.5
delineates the organization of the parallel version of UTCHEM, which for
now on will be named UTCHEMP.

Figure 5.5 – Organization of UTCHEMP

The main routines of IPARS framework are placed in the folder Fra-
mework. The folder Drive, inside Framework, contains the main subrou-
tine, called IPARS, which directly or indirectly calls all the other subrou-
tines. In folder Input there are subroutines to manage the reading, and
the initialization of the simulation. Memman, on the other hand, con-
tains several functions implemented in C++ that are used by the IPARS
framework. The types of the subroutines presented in the folders Parall,
Print, Well, and Util are straightforward: subroutines for communication
between processors, to export results, to help well related operations, and
some of general purpose. In folder IPARS, inside folder Source, there are
some additional IPARS subroutines that are used mainly to initialize the
simulation. On the other side, the folder UTCHEM contains almost all
subroutines that were previously presented in UTCHEM, as well as some
new ones. Since now the simulation is driven by the IPARS framework,
some operations were moved from subroutines originally in UTCHEM to
subroutines of the IPARS framework. For example, the part of the sub-
routines INOUT that were used to read geometry data were moved to a
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subroutine from the folder Input because such data is needed before the
calling of the subroutine that divides the grid. Thus, INOUT now executes
less operations that it did before. Finally, the folders Makes, Size, and
Work have files for the code compilation.

Figure 5.6 – Simulator workflow

The algorithm workflow of UTCHEMP is sketched in Figure 5.6. At
first the IPARS framework is initialized and the input files are read. Al-
most all data is read by the subroutine INOUT or its inner subroutines.
An exception to this are the geometry data reading, which occurs before
INOUT is called, and the well data reading, which is performed by the sub-
routines WELLREAD, now called outside INOUT. After reading the input
files, some additional initializations are performed and then it is called
the subroutine AAMAIN. AAMAIN was originally the the main UTCHEM’s
subroutine, directly or indirectly calling all the other ones. In UTCHEMP,
however, AAMAIN contains only the part of the code used to execute a
time step. After AAMAIN some additional outputs are generated and the
simulation is finalized.

5.2 EFVLib

The parallel computing methodology applied in the EFVLib is also based
on domain decomposition. The reasons are the same: the main com-
putational cost from the simulation usually comes from the grid-related
operations. When the domain is decomposed, each processing unit works
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only in a part of the domain, which is much smaller than the whole do-
main. Since the processors operate simultaneously, the time required to
complete a large scale simulation using several processors is equivalent
to the time that a single processing unit takes to run a small simulation
case.

The straightforward methodology for dividing a domain is to distribute
the grid elements from Equation (4.1) among the available processors.
This was indeed the methodology applied in UTCHEM, which uses a cell-
cen-tered numerical scheme. However in the EbFVM the unknowns are
at the vertices of the elements. A division based on elements would then
cause redundant computations since a vertex might be replicated in mul-
tiple computational domains. Furthermore, usually there are many more
elements than vertices. For example, in a typical tetrahedron grid, the
number of elements is six times the number of vertices [19]. Thus the
effort to divide a grid tends to be smaller if the division is based on vertices
rather than on elements. For these reasons, the grid division methodology
adopted in this work is based on vertices: each vertex is addressed to a
unique computational domain.

In Section 4.4 a general conservation equation was discretized using
the Element-based Finite Volume Method. From Equation (4.17) one may
note that the flux of a property through a face depends on the value of that
property at the element vertices. Thus, a vertex is in a sense connected to
all the other vertices from the elements to which it belongs. The notion of
connection leads to the representation of a grid as a graph. The vertices
are the graph’s nodes and if two vertices belongs to the same element,
then there is an edge connecting them. Figure 5.7 illustrates the graph
representation of a grid.

The graph representation of a grid is convenient for the division task.
Divide a grid means separate the nodes of its graph into different groups.
If two connected nodes go to different groups, then the edge connecting
them was crossed. However, those two nodes depend on each other for
the flux computation. If they are in separate groups, data must be in-
terchanged between those groups. So, minimizing the number of edges
crossed improves the quality of the grid division.
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Figure 5.7 – Graph in (b) is the graph of grid (a)

5.2.1 Graph partitioning

In this study the partition of graphs is supported by Metis library [1]. This
library gives back a vector P whose size is the number of nodes. Each
component of P is the partition to which the node belongs. There are two
graph partitioning methods available: METIS_PartGraphRecursive

and METIS_PartGraphKway. The first one implements a multilevel re-
cursive bisection algorithm [14] and will be referred to as bisection. The
second method implements a k-way partitioning scheme [15] and will
be referred to as k-way. The method chosen to parallelize the studied
codes was the METIS_PartGraphKway because it produces partitions of
comparable or even better quality and it also requires less time [15].

Both graph partitioning methods available in Metis – bisection and
k-way – are based on the multilevel paradigm. The partitioning itself goes
through three phases: coarsening, initial partitioning, and uncoarsening.

Coarsening phase

In the coarsening phase, adjacent nodes are grouped yielding a coarser
graph in order to diminish its partitioning complexity. This grouping pro-
ceeds until a sufficiently small graph is achieved.

A weight is attributed to each node and to each connection. Let N n

be a group of nodes that were collapsed into a single node n . The weight
of n is simply the sum of the weights of the nodes in N n . Edges connecting
two nodes that are both in N n are eliminated. On the other hand, all edges
connecting a node from N n to an external node p are collapsed into a
single edge connecting n to p . The weight of this edge is of course the sum
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of the weights of the collapsed edges. This weight-based strategy helps
the construction of good partitions in the coarser graphs with respect to
the finer graph. The edge-cut of the graphs are the same and a balanced
partitioning in the coarser graphs tends to be also balanced in the finer
graph [15].

The method chosen to group the nodes is the Heavy Edge Matching
(HEM) [15]. The objective of this method is the production of coarser
graphs which lead to partitions that minimize the edge-cut. This is achie-
ved by looking for coarsened graphs that reduce the sum of the edge
weights. Denoting by ep q the edge that connects the nodes p and q and
by w (ep ,q ) the weight of such edge, the following relation holds

∑

ep ,q∈G i+1

w (ep ,q ) =
∑

ep ,q∈G i

w (ep ,q )−
∑

p ,q∈N n ;n∈G i

w (ep ,q ), (5.1)

where G i+1 is the graph obtained by coarsening G i . Thus in order to
minimize the edge weight sum it is interesting to collapse the edges whose
weights are the biggest. In the HEM method all nodes are visited in a
random order. If a node n was not matched yet (grouped to other nodes),
it is matched to the unmatched adjacent node whose corresponding edge
weight is the biggest. If such adjacent node does not exist, the node n
remains unmatched. According to [15], this methods produces good re-
sults in practice, despite the fact that it does not guarantee that coarsened
graph obtained is the one that minimize the edge weight sum.

Initial partitioning phase

The second phase is the initial partitioning phase. It takes place when
the coarsening method is not effective anymore, that is, the graph size
reduction factor of successive graphs is greater than 0.8. This phase is the
major difference between both Metis partitioning methods: the bisection
method divides the coarsest graph in only two parts and the k-way, on the
other hand, splits it directly into k parts.

As already mentioned, the bisection method divides the coarsest
graph in two parts, which are then uncoarsened. The resulting graphs are
then divided again until the required number of partitions is achieved.
The method must be applied log2 k times in order to obtain k partitions.
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The complexity of the method is O (|E | log2 k ), where |E | is the number of
connections (edges) [13].

In the k-way partition, the coarsest graph is divided directly into k
parts and thus applying the method once is enough to obtain the number
of partitions wanted. Curiously, the k-way method divides the coarsest
graph using the multilevel bisection algorithm [14]. Despite the fact that
a k-way division is much more laborious than a bisection, the coarsest
graph is so coarse that its division is computationally cheap. Since the
method is applied only once, its complexity is reduced to O (|E |) [15].

Uncoarsening phase

The last phase is referred to as uncoarsening. A straightforward method-
ology would be simply ungrouping the nodes until the finer graph is rea-
ched. However, graphs with a larger number of nodes have also a larger
number of degrees of freedom so are much more complex. Furthermore,
the best partition of a coarse graph may not be the best one of a finer
graph. For this reason, Metis improves the quality of the graph partition
by swapping nodes among the partitions as the graph is uncoarsened [15].
The method chosen in this study is the Greedy Refinement (GR). In this
approach, the nodes are visited in a random order and at each node n
it is computed a gain function with respect to each partition b using the
formula

gb (n ) = EDb (n )− ID (n ). (5.2)

EDb (external degree) is the sum of edge weights of the adjacent nodes
that are in b while ID (internal degree) is the sum of the edge weights
of the nodes that are also in the partition a to which n belongs. The
node n will be moved to partition b if gb is positive and greater than the
gain of any other partition. Besides, in order to preserve load balance the
following conditions must also be achieved:

∑

p∈b

w (p ) +w (n )≤W max (5.3)

∑

p∈a

w (p )−w (n )≥W min. (5.4)
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The values used in Metis for W max and W min are 0.9|V0|/k and 1.03|V0|/k
respectively, where |V0| is the sum of all the node weights and k is the
number of partitions. The GR algorithm is iterated until convergence.
According to [15], the number of iteration is small.

5.2.2 Ghost nodes

In Section 4.4 a general conservation equation was discretized using the
Element-based Finite Volume Method. It was noted that the stencil as-
sociated to a node n contains all the nodes that share an element with
this node, as illustraded in Figure 4.5. Those nodes are necessary not only
to compute the shape functions, but also to store values of fields defined
on the grid. As a consequence, the subdomains obtained by partitioning
the related graph of a grid must be extended in order to embrace every
neighboring node, resulting in subdomain overlapping.

Consider for example the grid illustrated in Figure 5.8. This grid was
divided into two subdomains, each subdomain being assigned to a pro-
cessor unity. The nodes and their corresponding control volumes ad-
dressed to processor 0 are painted in yellow and the ones addressed to
processor 1 are painted in red. Due to the stencil of the EbFVM, the dis-
cretized equations of nodes 1, 5, 8, 11, and 12 in subdomain 0 require val-
ues at nodes 0, 9, 10, and 13, which are in another computational domain.
The same applies for subdomain 1: discretized equations of nodes 0, 9, 10,
and 13 demand values at nodes 1, 5, 8, 11, and 12. The subdomains thus
must be extended, resulting in the grids illustrated in Figure 5.9.

The nodes that come from another computational domain are called
ghost nodes and are similar to the ghost cells used in UTCHEM. No com-
putation is performed for them. They are used only to store values. If a
value of a field changes in a node, then its value should be updated at all
computational domains where such node is a ghost node. This operation
is actually quite complicated, but the code developed for it hides most of
the technical details, leaving for the final user a simple interface. Subsec-
tion 5.2.6 shows how simple such interface is.

The nodes as well as the elements have local indexes at their local
subdomains. The ordering of the nodes is performed in the following
way: the first nodes are local – which means that they are addressed to
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Figure 5.8 – Unstructured grid divided into two subdomains
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Figure 5.9 – Subdomains extended

the current subdomain – leaving the last indexes for the ghost nodes. This
way of ordering is convenient for three reasons:
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• If the user intends to access only the local nodes, it is sufficient
swapping the vector of vertices until the last local vertex is reached;

• The user may know if a node is local simply by checking if its index
is lower than the number of local vertices;

• It is not necessary to store the vertices in separate vector, which is
computationally very convenient.

Figure 5.10 illustrates the local indexes of the nodes of the grid from Figure
5.9.
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Figure 5.10 – Local indexes of two subdomains

5.2.3 Assembling in parallel a system of linear equations

In almost all simulations it is necessary to solve a system of linear equa-
tions (SLE). This is one of the most time consuming operations. It is es-
timated that about 60 to 70% of the computational time is spend solv-
ing systems of linear equation [16]. Since the main focus of this work is
on computational performance, the SLE must be solved very efficiently.
However, the development of a parallel solver for SLE is beyond the objec-
tives of this work. It was used instead the Portable, Extensible Toolkit for
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Scientific Computation (PETSc) [4]as an external library to solve the SLE’s.
PETSc provides a lot of tools specially designed for scientific applications
and is recognized as one of the most powerful libraries available.

Since PETSc is intended to support very general applications, there
are many details that must be configured in order to assemble and solve a
system of linear equations. It is desired however the product of this work
to be simple in order to encourage people to employ parallel computing
in their future developments. For this reason, a relatively simple com-
putational interface was created to hide most of the PETSc details. The
matrix are supposed to be sparse, while both matrix and the vectors of
the linear system are distributed along the available processing units. In
other words, matrix and vectors are parallel. The default preconditioner
and solver are the incomplete LU factorization and GMRES, respectively,
but the user is allowed to choose any other methods available in PETSc.

Considering a generic SLE Ax = b , PETSc distribute its components
among the available processors. It is possible either to define the size
of the global SLE and let PETSc divide the SLE among the processors or
define the size of each local SLE and thus the global size will be the sum
of the local sizes. In any case, the first processor will have the first rows,
the second processor will have the rows following the first processor rows,
and so on. Each processor p has a submatrix Ap with the rows of A as
well as subvectors xp and bp with the corresponding components of x
and b . Despite each processor having only a portion of the SLE, PETSc
handles the SLE as a global one. This means that the indices used to
set a SLE are global instead of local. A processor may set a value even
if the corresponding row is outside its range. If that is the case, the value
is communicated to the processor that actually have the corresponding
row. Such communication however should be avoided, since it degrades
performance. It is recommended each processor to set only local values.

In order to better handle communication and thus optimize perfor-
mance, PETSc divide the matrix Ap into two other ones: the “diagonal”
matrix Ap ,d and the “off-diagonal” matrix Ap ,o . Ap ,d is a square matrix
composed by the entries Ai j of A such that the rows i and j are local to
the processor p . Ap ,o on the other hand contains all the entries of Ap that
are not in Ap ,d . Such way of interpret Ap is convenient for example in a
matrix-vector multiplication, which is an operation that may be executed
several times while solving a SLE. Let w be the vector to which A will be
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multiplied, wp its local segment in the processor p , and wo the segment
of w outside p . The operation performed locally in p is

Ap w =
�

Ap ,d Ap ,o

�

�

wp

wo

�

= Ap ,d wp +Ap ,o wo . (5.5)

The multiplication Ap ,d wp can be promptly executed, since it involves
only local values. The values wo on the other hand must be received
from another processors. The division of Ap in diagonal and off-diagonal
portions is also convenient for Block Jacobi preconditioners, described
later. In this case, operations with the off-diagonal matrix Ap ,o are simply
ignored.

Based on the observations above and on the domain decomposition
methodology described in the previous sections, have in mind that a pro-
cessor have local vertices and local SLE rows and that they are not nec-
essarily related. The first processor for example will have for sure the
first SPE rows but probably not all the first vertices. In fact, the proces-
sor 0 in Figure 5.8 has the set of vertices {1, 2, 4, 5, 7, 8, 11, 12} and not the
set {0, 1, 2, 3, 4, 5, 6, 7}. It is important however to ensure that the local
rows corresponds to the local vertices. A processor has only the data to
compute the discretized conservation equation coefficients of the local
vertices. If the SLE row of a local vertex is not local, the coefficient must
be transmitted to the processor in which the row is local, resulting in
communication overhead. Furthermore, the solution x retrieved from
PETSc is the solution at the local rows. If the local rows are not related to
local vertices, such solution must be manually transmitted to the corre-
sponding processors. Another way of retrieving the solution is ask PETSc
for the global solution. This of course is not smart because it requires
PETSc to make lots of communication to have a copy of the global solution
on each processor and also demands too much memory.

To make sure the local rows are related to the local vertices, two mea-
sures are taken. First, the local size of the SLE must be equal to the number
of local vertices (supposing only a single variable is being solved). In order
to ensure this, the local size of the SLE is directly set in PETSc instead of
setting the global size and let PETSc to divide the SLE. Secondly, a new
global indexation is set to the vertices. The new indices are called PETSc
indices. The PETSc index of a vertex in a processor p is its local index in
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p plus the sum of the number of local nodes from processors q such that
q < p . In Figure 5.11 it is illustrated the PETSc indexes of the nodes of the
grid from Figure 5.9. Note that now the processor 0 has in fact the set of
vertices {0, 1, 2, 3, 4, 5, 6, 7} as it was desired. It is worth noting that this new
global indices are used only to handle the local SLE. The results exported
from a simulation still respecting the original global indexation.
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Figure 5.11 – PETSc indexes of two subdomains

Figure 5.12 illustrates the structure of a matrix assembled in parallel
using the EbFVM on the grid of Figure 5.11. This matrix has four submatri-
ces: A0,d , A0,o , A1,d , and A1,o . A0,d and A1,d are the diagonal submatrices
of processors 0 and 1, respectively. Their coefficients are associated to
local nodes only. Matrices A0,o and A1,o on the other hand are the off-
diagonal submatrices. Their coefficients are associated to a local and a
ghost node. It is important to emphasize that each processor assembles
its diagonal and off-diagonal submatrices, not interfering in submatrices
of other processors. As an example, consider without losing generality
that the problem to be solved is purely diffusive. The matrix is symmet-
ric, which means that for every pair of nodes (m , n ) the coefficients am ,n

and an ,m will be the same. If m and n are in different subdomains, then
such coefficient will be calculated twice: one time by the processor of the
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subdomain of m and another time by the processor of the subdomain of
n . Regarding that values at ghost nodes are updated, the results at both
processors will be the same. This shows that reducing interface between
subdomains is important not only to reduce the amount of data commu-
nicated between processors, but also to reduce repeated calculations.

a0,0 a0,1 a0,2 a0,8

a1,0 a1,1 a1,2 a1,3 a1,4

a2,0 a2,1 a2,2 a2,3 a2,4 a2,7 a2,8 a2,9

a3,1 a3,2 a3,3 a3,4 a3,5

a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7 a4,9

a5,3 a5,4 a5,5 a5,6 a5,7

a6,4 a6,5 a6,6 a6,7 a6,12 a6,13

a7,2 a7,4 a7,5 a7,6 a7,7 a7,9 a7,12 a7,13

a8,0 a8,2 a8,8 a8,9 a8,10

a9,2 a9,4 a9,7 a9,8 a9,9 a9,10 a9,11 a9,12

a10,8 a10,9 a10,10 a10,11

a11,9 a11,10 a11,11 a11,12

a12,6 a12,7 a12,9 a12,11 a12,12 a12,13

a13,6 a13,7 a12,12 a13,13

A0,d
A0,o

A1,o A1,d

Figure 5.12 – Matrix assembled in parallel

5.2.4 Solving in parallel a system of linear equations

The matrix coming from the discretization of the conservation equations
is sparse and thus it is not feasible to apply a direct method to solve the lin-
ear system. Instead, iterative methods are used for that task. In iterative
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methods, instead of solving Ax = b it is proposed to solve a much more
cheap linear system K x = b . Since K is different from A, the solution
x0 = K −1b probably is not the solution of the desired linear system. There
is an error e0 = x0 − x and a residual r0 = Ax0 − b such that Ae0 = r0.
However, it is not practical to solve Ae0 = r0 and thus the linear system
K ẽ0 = r0 is solved instead. ẽ0 is an approximation of the actual error and
it is used to correct the approximate solution: x1 ≡ x0 − ẽ0. This process
is executed until convergence is reached. The general formula of such
scheme is

xi+1 = xi −K −1ri . (5.6)

All methods that obey the above formula are called stationary. The term
stationary comes from the fact that the operations applied in each iter-
ation are the same. There is a generalization of stationary methods that
contemplates almost all known iterative methods. Instead of using only
the last residue to compute the new approximate solution, all the previous
residues are used:

xi+1 = xi +
∑

j≤i

K −1r jαi j , (5.7)

where αi j is the weight of the term K −1r j . For stationary methods,

αi j =

�

−1, ifi = j
0, ifi 6= j

(5.8)

K is a linear system preconditioner and the convergence of an itera-
tive method depends on how close to the original matrix A is the matrix K .
Letting DA , LA , and UA be the diagonal, lower triangle, and upper triangle
parts of A, some classical iterative methods are:

• Richardson: K =αI ;

• Jacobi: K =DA ;

• Gauss-Seidel: K =DA + LA ;

• SOR: K =α−1DA + LA ;

• Symmetric SOR (SSOR): K = (DA + LA)D −1
A (DA +UA).
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Based on Equation (5.6) (and on its general form given by Equation
(5.7)), one may see that the following operations are common to every
iterative linear system solver:

• Vector operations (like additions and inner products);

• Matrix-vector product;

• Construction of a preconditioner matrix K ≈ A and the solution of
a linear system K x = y .

Some methodologies to make these operations parallel are presented in
[9].

Vector operations

The main vector operations are vector additions and inner products. Vec-
tor additions are operations of the form x ←αx+β y . If all vectors are dis-
tributed in the same way, this operation is intrinsically parallel: all proces-
sors can execute it without any communication. Inner products, on the
other hand, are of the form α= x T y . This is a reduction operation, since
the inputs are vectors and the result is a scalar. This operation cannot be
executed without communication because each processor contains only
a part of the vectors x and y . The common strategy is to compute the
quantities αP = x T

P yP at each processor, transmit the values obtained to
all processors, and then perform the sum

α=
N
∑

i=1

αP , (5.9)

where xP and yP are the local segments of x and y and N is the number
of processors.

Matrix-vector product

The stencil of the numerical methods used to solve partial differential
equations makes the matrix of the resulting linear system to be sparse.
Thus, for most j ’s, 1 ≤ j ≤ n , where n is the size of the linear system, the
operation yi ← yi +ai j x j is redundant. Let IP be the index set of the ma-
trix rows owned by a processor P (indexes of the diagonal portion of the
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sumbmatrix AP , described in the beginning of this section). The values x j

that the processor P actually needs in order to perform the matrix-vector
multiplication are those such that j is in the set

SP,i = { j : j /∈ IP , ai j 6= 0} (5.10)

It is not clever however to send to P a package for each set SP,i . Instead,
the sets SP,i are combined into a single one defined by SP ≡ ∪i∈IP

SP,i . The
processor P receives only one package with the values of x in SP and then
is able to perform the multiplication.

Preconditioner

The parallelization strategy applied for the preconditioner strongly de-
pends on what is the chosen of K . The Jacobi method is intrinsically
parallel, since K is the diagonal of A and the operation x = K −1 y can be
performed to each component of x independently. For other methods, on
the other hand, there are difficulties. One of the most common precon-
ditioners is the incomplete LU factorization (ILU). This type of factoriza-
tion is performed using Gaussian elimination just like the complete LU
factorization, but the elements that would become non-zero are simply
ignored. This avoids the fill-in phenomenon, letting the matrix L+U with
the same sparsity of the original matrix A.

The problem with ILU happens when it is necessary to solve a system
L x = y in parallel. The second processor must wait the first one solve its
unknowns to start working. The third processor, by its turn, must wait the
second one, and so on. Solving L x = y is recursive and thus sequential.
One of the strategies that has been proposed to scale the ILU factorization
is the Block Jacobi method. The idea of the Block Jacobi method is to
ignore all matrix components outside the processor subdomain. In other
words, the connection between processors is simply ignored. Doing this
is actually not wrong, since one must remember that K is only an approx-
imation of A. More iterations will be needed, but the method becomes
scalable.

Another strategy that may be applied to scale the ILU factorization
is the graph coloring associated with permutation. To each node p it
is associated a color in such a way that all its neighbours have a color
different from p . Hence, there are no neighbours with same color. The
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matrix is then permuted to group the nodes with same color. The resulting
matrix have diagonal blocks that are diagonal matrices. Each color is then
solved at a time. Since nodes of same color does not depend on each
other, the process can be executed in parallel. After a color is processed,
data is exchanged between the processors so that all of them have the
necessary values to start processing another color.

5.2.5 Wells and boundaries

Wells and boundaries are also geometrical entities and thus they must be
considered in the domain decomposition. The treatment for both of them
is straightforward.

A boundary is a collection of element facets that are at the contour
of the solution domain [11]. These element facets are defined as bound-
ary elements. In two-dimensional grids the boundary elements are lines
whereas in three-dimensional grids they may be triangles or quadrangles.
It is possible to define several boundaries, each one having a group of
boundary elements and a particular boundary condition.

The methodology used to divide the boundaries is similar to the one
applied for the elements. Consider again the grid of Figure 5.8 whose
boundaries are defined in Figure 5.13. For a control volume whose vertex
p is at the boundary of the domain, it is also necessary to compute fluxes
through boundary elements. All boundary elements that have p as one
of their vertices are involved in the computation. Thus, the condition to
divide the boundaries among the processors is: if a boundary element e of
a boundary E is in a subdomainΩi if there is a vertex v inΩi such that v is
a vertex of e . If e is inΩi , not necessarily all boundary elements of E are in
Ωi : only the one with vertices inΩi . Figure 5.14 shows how the boundaries
from the grid of Figure 5.13 may be split into two subdomains. Subdomain
0 have the boundaries 0 and 1 and subdomain 1 have the boundaries 0,
1, and 2. Note that neither subdomain 0 nor subdomain 1 have all the
elements of boundary 1.

According to Figure 5.14, the nodes at the contour of a subdomain
either are at the contour of the global domain or are ghost nodes. To the
ones at the global subdomain contour, it is simply applied the boundary
condition associated to the boundary to which they belong. On the other
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Boundary 0

Boundary 1

Boundary 2

Well 0

Figure 5.13 – Boundaries and well

Boundary 1

Boundary 2

Well 0

Boundary 0

Processor 0 Processor 1

Figure 5.14 – Boundaries and well

hand, for the ghost nodes nothing needs to be done, since their purpose
is only store data and thus no computation is performed at them.

Wells are represented in EFVLib as a sequence of line segments that
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are coincident with element edges. One of those line segment is called
well element and is limited by two nodes. Each one of this nodes is asso-
ciated to half of the well element. The flow rate of a phase α going from a
well to the control volume of a node p is the sum of the flow rates of each
of the half well elements associated to p . he phase flow rate is expressed
by

qp =λα,p WIp

�

Pp −Πp

�

, (5.11)

where λα,p is the phase mobility, WIp is the well index, Pp is the reservoir
pressure, and Πp is the well pressure [11]. All of those variables excepting
are evaluated at the reservoir, except for Πp , which is evaluated inside
the well. Since the above equation depends on the reservoir condition,
it is straightforward that wells should be segmented following the grid
division. Two well elements that share a node must be present in the
subdomain in which this node is local. Figure 5.14 shows the division of
a well into two subdomains.

5.2.6 The code

The implementations in EFVLib for parallel running does not properly
solve a case in parallel. They are actually a set of utilities that helps an
EFVLib user to adapt his/her code to be solved in parallel. The user must
have in mind that, instead of dealing with the whole domain, the code are
now being used for only a portion of the domain. Sometimes it is neces-
sary to update values at ghost nodes, divide a global field into local fields,
or reunite local fields into a global one. The parallel utilities developed
for EFVLib hide most of the technical details and provide a simple user
interface.

Three external libraries were used: Metis 5.1.0 [1], PETSc 3.4.4 [4], and
Boost 1.55 [5]. The first one is used to partition the grid nodes according
to what was explained in Subsection 5.2.1. The second one is devoted to
solve in parallel systems of linear equations coming from the discretiza-
tion of the conservation equations. Both Metis and PETSc are hidden
inside the parallel utilities developed here and hence the user has almost
no contact with them. Boost on the other hand provides a simplified
interface for the MPI functions that was made available to the user and
also used in the implementation of the parallel utilities.
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There are four classes for supporting parallel computing in EFVLib:
VertexPooler, GridDivider, FieldDivider, and FieldOnVerti-

cesSynchronizer. The interface of class VertexPooler is presented
in Listing 5.1. This class is used to pool the nodes (vertices) into sub-
domains using Metis functions. Both k-way and bisection Metis graph
partitioning methods are available and can be chosen using the variable
partitionMethod. K-way is the default method. The class Vertex-
Pooler is actually an abstract class and thus cannot be instantiated. It is
necessary to create a class derived from VertexPooler that implements
the method computeWeightArray, which is responsible by setting the
weights of the graph edges. Two of such classes were implemented – Un-
weightedVertexPooler and InverseDistanceWeightedVertex-

Pooler – but the user is free to create a custom VertexPooler.

The function divide is the main function of VertexPooler. This
function properly does the partition of the nodes of a grid. There are
two input parameters: GridData and nParts. GridData is a temporary
computational structure that stores the essential data of a grid that will
be divided[18]. nParts is the number of partitions, which will be usually
equal to the number of processors. The output of divide is the variable
subdomains, which is an array that has the subdomain index of each
node.

Listing 5.1 – class VertexPooler

1 class VertexPooler {
2 public:
3 VertexPooler( PartitioningMethod partitioningMethod =KWAY );
4

5 void setPartitioningMethod( PartitioningMethod partitioningMethod );
6 void divide( GridDataPtr gridData, int nParts, idx_t∗& subdomains );
7

8 virtual ~VertexPooler(){}
9

10 protected:
11 // ... protected attributes
12

13 private:
14 virtual void computeWeightArray( GridDataPtr gridData, idx_t∗& weights ) = 0;
15 // ... other private methods
16 };//class VertexPooler
17

18 typedef SharedPointer< VertexPooler > VertexPoolerPtr;
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GridDivider is a class that takes a global GridData and creates the
local GridData for each subdomain. This is a very important class. It
partitions the nodes using a VertexPooler, creates the subdomains’s
elements, divides wells and boundaries, and extends the subdomains to
include ghost nodes. The interface of this class is in Listing 5.2. divide
is the function that should be called to perform the actual division a grid.
The master processor (processor whose rank is 0) should call the func-
tion divide passing as parameters the GridData of the global grid (only
the master processor has access to the whole grid) and, if the desired
VertexPooler is different fromUnweightedVertexPooler, aVertex-
Pooler. The other processors call the function divide passing no pa-
rameter. They receive from the master processor the GridData of their
local subdomain. The output ofdivide is a structure that contains the lo-
cal GridData as well as vectors that may be used by FieldDivider and
FieldOnVerticesSynchronizer, classes that will be described next.

Listing 5.2 – class GridDivider

1 class GridDivider {
2 public:
3 GridDivider(){}
4

5 GridDividerOutputPtr divide( GridDataPtr gridData, VertexPoolerPtr vertexPooler
6 = VertexPoolerPtr( new UnweightedVertexPooler ) );
7 GridDividerOutputPtr divide();
8

9 virtual ~GridDivider(){}
10

11 private:
12 // ... private methods
13 };
14

15 typedef SharedPointer<GridDivider >GridDividerPtr;

FieldOnVerticesSynchronizer, listed in Listing 5.3, is a class
whose purpose is updating values at ghost nodes. It can update any type
of field defined in EFVLib: fields of scalars, vectors, vectors of vectors
(they are not necessarily a matrix because the size of the vectors may
not be the same), or symmetric tensors. Other types of fields can also be
updated as long as the field type is properly serialized (class serialization
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is described in [5]). The class FieldOnVerticesSynchronizer uses
a structure called SynchronizerVerticesVectors, which is an out-
put of the grid division. The function that updates a field is the function
synchronize. All processors must call this function passing as param-
eter the local field to be updated. It was used in the function an opti-
mization provided by Boost that consist on the separation of the structure
of a vector from its content [5]. The structure of the vectors that will be
communicated using MPI methods is broadcast to the processors when
the class FieldOnVerticesSynchronizer is instantiated. When the
function synchronize is called later, each processor already knows the
structure of the MPI package that will be received, not being necessary the
allocation of more memory than what is needed.

Listing 5.3 – class FieldOnVerticesSynchronizer

1 template< class _FieldType >
2 class FieldOnVerticesSynchronizer{
3 public:
4 // ... some typedefs
5

6 FieldOnVerticesSynchronizer( SynchronizerVerticesVectorsPtr
7 synchronizerVerticesVectors );
8

9 void synchronize( FieldOnVerticesPtr field );
10

11 virtual ~FieldOnVerticesSynchronizer(){}
12

13 protected:
14 // ... protected attributes
15

16 private:
17 // ... private methods
18 };

FieldDivider is a class intended for scattering a global field into lo-
cal ones and to gather local fields into a global one. The scatter operation
is usually performed at the beginning of a simulation when the master
processor have read the initial conditions and must spread the data to the
local subdomains. The gather operation on the other hand is necessary
to collect and export results using the master processor. There are two
functions for scattering (lines 8 and 9 of Listing 5.4) and two functions for
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gathering (lines 11 and 12 of Listing 5.4). The ones with two arguments are
intended to be called only by the master processor, which is the only pro-
cessor that has access to the global field. The ones with a single argument
are called by the other processors.

Listing 5.4 – class FieldDivider

1 template< class _EntityType, class _FieldType >
2 class FieldDivider{
3 public:
4 // ... some typedefs
5

6 FieldDivider( IntVector2DPtr entitiesOfSubdomains);
7

8 void scatter( FieldTypeVectorPtr global, FieldTypeVectorPtr local );
9 void scatter( FieldTypeVectorPtr local );

10

11 void gather( FieldTypeVectorPtr local, FieldTypeVectorPtr global );
12 void gather( FieldTypeVectorPtr local );
13

14 virtual ~FieldDivider(){}
15

16 protected:
17 // ... protected attributes
18

19 private:
20 // ... private methods
21 };

An example of a simple program that solves a two-dimensional heat
transfer problem using EFVLib is presented in Appendix B.



CHAPTER

6
Experimental Environment and

Results

This chapter presents results obtained from the new parallel versions of
UTCHEM and EFVLib. The parallel version of UTCHEM will be called
UTCHEMP to distinguish it to its previous serial version. UTCHEMP is a
reservoir simulator that have many models which enables the simulation
of very complex fluid flow phenomena in reservoirs. It is necessary thus to
validate UTCHEMP against several different cases to guarantee that all of
its features are working as expected. Four cases are presented here. Each
one of them explores different models implemented in the simulator.

The cases used to evaluate UTCHEMP were run in the TACC-Lonestar
cluster [3], a cluster from The University of Texas at Austin. It has a total
of 1,888 computer nodes, each one with 12 cores. The clock frequency of
the cores is 3.33 GHz and each node has 24 Gb of RAM memory available.
The compiler used is an Intel Fortran, with the optimization flag O3. A
single cluster node was used in the cases up to 8 processors and several
nodes with 8 processors per node in the cases with more than 8 proces-
sors. The evaluation of UTCHEMP started with its validation against some

61
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of its benchmark cases. The number of processors that was possible to
be employed was small because of the small number of grid blocks. It
was used in this study only 1, 2, 4, and 8 processors. The second part
is a performance evaluation. The number of grid blocks were sharply
increased keeping the size of the grid blocks the same to avoid numerical
instabilities. The wells were rearranged in a pattern similar to the original
case. It is very important to emphasize that the performance evaluation
case is different from the validation case. However, the workflow of the
simulation is the same so that the results are expected to be right. Further-
more, some cases had their original final simulation time reduced in the
performance evaluation due restrictions in the TACC utilization policy,
which does not permit that a simulation take more than one day to finish.

The methodology used with EFVLib was slightly different. EFVLib is
a numerical library intended to help the user to develop its own appli-
cations. So, it is not necessary to validate the library against cases that
are physically different. What is important is that the cases cover most
of EFVLib’s functions. Only two cases are presented here, both of them
simulating a two-phase, incompressible, immiscible flow. The first one
has a small but geometrically complex grid intended mainly to validate
the library, despite some performance tests were executed. The geometry
of the second case is much more simple, although the grid has many more
elements. Both cases were run in the CPU cluster of SINMEC, a CFD
laboratory from the Federal University of Santa Catarina. The cluster has
64 computer nodes, each one with 8 Gb of RAM memory and 8 cores with
2.00 GHz of clock frequency. The compiler used is a GCC 4.1.2.

6.1 Case 1

This is a water flooding case. There are four wells injecting water and 13
producer wells. All wells operate according to a flow constrained condi-
tion. Figure 6.1 illustrates the water saturation field after 800 days. The
reservoir permeability is anisotropic and heterogeneous. The simulation
runs for 2526 simulation days. The coarse grid used has 31 grid blocks in
direction x , 45 grid blocks in direction y , and three in direction z . The
grid block sizes are constant and equal to 100 ft in directions x and y , and
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Table 6.1 – Case 1 properties

Property Value
Reservoir lenght 3100 ft
Reservoir width 4500 ft
Reservoir thickness 24 ft
Coarse grid 31x45x3 (4185)
Fine grid 200x200x5 (200000)
Number of components 11
Max. number of phases 4
Porosity 0.1371
Permeability in x dir. from 10 to 1250 mD
Permeability in y dir. from 20 to 2500 mD
Permeability in z dir. 5 mD
Initial water saturation 0.1
Initial reservoir pressure 1500 psi
Depth 3400 ft
Number of injector wells 4
Number of producer wells 12
Simulation days 2526 days

size 11, 9 and 4 ft (from top to bottom) in direction z . The main properties
of the case are shown in Table 6.1.

Figure 6.1 – Water saturation after 800 simulation days of case 1

The validation of UTCHEMP against UTCHEM is based on results of
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average aqueous phase pressure, average water saturation, and average
oil production rate. UTCHEMP was run using 1, 2, 4, and 8 processors.
The results obtained are presented in the Figures 6.2, 6.3, and 6.4. As one
may see, the results are in good match.
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Figure 6.2 – Average aqueous phase pressure of case 1
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Figure 6.3 – Average water saturation of case 1
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Figure 6.4 – Overall oil production rate of case 1

With only near 4000 grid blocks, the grid chosen is too coarse for
an appropriate performance evaluation. Following the methodology de-
scribed in the beginning of this chapter, the grid size was increased to 200
x 200 x 5 (200, 200, and 5 grid blocks in directions x , y , and z , respectively),
which gives a total of 200,000 grid blocks. The wells were rearranged in a
similar pattern. It was used 1, 2, 4, 8, 16, 32, 64, and 128 processors. Figure
6.5 presents the total computational time required by the simulations. It
was reduced from almost 5 hours using a single processor to about 7 min-
utes with 64 and 128 processors. Figure 6.6 shows the speedup, defined
in Equation (2.1). The red dashed line is the ideal speedup, defined in
Equation (2.2). As one may see, the computational time achieved with 64
processors is almost the same achieved with 128. This is an indication that
the increase in performance that it is possible to have with parallel com-
puting is saturating. The relative computational weight of non-parallel
operations and the cost of communication between processors becomes
high compared to the cost of parallel operations. In fact, when 128 pro-
cessors are used, the division based on direction y makes each processor
have one or two grid blocks in this direction. Thus, the number of ghost
nodes at each subdomain is approximately the same of the number of
ghost nodes.
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Figure 6.5 – Total computational time according to the number of proces-
sors of case 1
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Figure 6.6 – Global speedup of case 1

Table 6.2 presents the computational time of some UTCHEMP op-
erations. The results indicate that the initialization time grows as the
number of processors increase, which is reasonable since the input data
must be broadcast to a larger number of processors. The computation of
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transmissibilities and salinity seems to be scalable operations due to their
time reduction. The computation of concentrations had its time reduced
with the increase of the number of processors, but then starts to grow up
again with a large number of processors. This happens because the main
routine of UTCHEMP that computes concentrations is actually huge and
contains not only explicit grid-related operations, but also communica-
tion in order to update variables at ghost nodes.

Table 6.2 – Computational times in seconds of case 1

Prcs Total Time Init. Trans. Conc. Salinity LS Solving

1 16894.7 3.044 143.9 1524.3 43.81 15122.2
2 10656.8 2.677 84.53 783.24 31.39 9718.48
4 8050.04 2.824 58.75 446.21 26.15 7487.80
8 5210.12 2.738 33.80 265.18 14.77 4874.41

16 2418.94 5.800 15.64 137.32 6.196 2241.78
32 925.175 10.80 7.929 97.959 2.737 798.128
64 407.275 18.06 4.584 83.246 1.504 290.474

128 376.592 35.556 3.199 109.116 1.318 202.79

Figure 6.7 shows the contribution of some operations over the global
computational time. As one may see, the biggest contribution is the solv-
ing of linear systems coming from the aqueous phase pressure equation
discretization. Following that, there are the explicit solving of concentra-
tion equations and the computation of transmissibilities. Since PETSc is
used to solve systems of linear equations, this library is the main respon-
sible for the total computational time of this case.

6.2 Case 2

The second case is a gel treatment problem. The main features of this case
are summarized in Table 6.3. The reservoir has length 1100 ft, width 1000
ft, and thickness 27 ft. It is inclined in directions x and y with dip angles
θx = 0.02923 rad and θy = 0.00277 rad respectively. The reservoir has
heterogeneous permeability and porosity field: the porosity field changes
from 0.083 to 0.499 whilst the permeability is 72 mD at the first and 900
mD at the second reservoir layers. The coarse grid has 14 grid blocks in
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Figure 6.7 – Contribution on the total computational time of case 1

direction x , 13 grid blocks in direction y , and 2 grid blocks in direction z ,
which gives a total of 364 grid blocks. There is a single injector well and
three producer wells. The fluid injected is water and the producers oper-
ate at constant bottom hole pressure. The flow is not isothermal and thus
the energy equation must be solved. Initially the reservoir is at a uniform
temperature of 103◦F, but the fluid injected is at 68◦F, which makes the
average temperature decrease. The case runs until 816 simulation days.
Figure 6.8 shows the temperature field after 510 simulation days.

Figures 6.9, 6.10, and 6.11 presents the results of the validation of
this case. As one may see, the results are in good match, indicating that
probably there is no bug in UTCHEMP in this case. We should always
emphasize that results correctness is much more important than a better
software performance once of course wrong results are worthless.

After the validation the grid size was increased to 200 x 200 x 10, giving
a total of 400,000 grid blocks, to evaluate the software parallel perfor-
mance. The case were run with 1, 2, 4, 8, 16, 32, 64, and 128 processors.
The final simulation time was decreased to 400 days, otherwise using a
single processor would require more than one day to finish the simula-
tion, exceeding the maximum time allowed in TACC. Figure 6.12 shows
the total computational time spent by the simulations. With a single pro-
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Figure 6.8 – Temperature after 510 simulation days of case 2

Table 6.3 – Case 2 properties

Property Value
Reservoir lenght 1100 ft
Reservoir width 1000 ft
Reservoir thickness 27 ft
Coarse grid 14x13x2 (364)
Fine grid 200x200x10 (400000)
Number of components 13
Porosity from 0.083 to 0.499
Permeability in x dir. first layer 72 mD, second layer 900 mD
Permeability in y dir. first layer 72 mD, second layer 900 mD
Permeability in z dir. first layer 72 mD, second layer 900 mD
Initial water saturation 0.3001
Initial reservoir pressure 2000 psi at 1300 ft
Depth 1300 ft
Number of injector wells 1
Number of producer wells 3
Simulation days 816 days

cessor the simulation took about half a day to finish, while with 128 it was
only about 20 minutes. Figure 6.13 presents the speedup of this case. It is
interesting to note that up to 32 processors the results are similar to what
is predicted by the Gustafson-Barsis’s Law, discussed in section 2.5, but
then the speedup starts to saturate, as predicted by Amdahl’s Law.
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Figure 6.9 – Average aqueous phase pressure of case 2
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Figure 6.10 – Average water saturation of case 2

Table 6.4 has the computational time values obtained at the main op-
erations executed by the simulator. The results are similar to the last case.
As the number of processors increase, the initialization time increase,
but the other times decrease. It was not noted increasing in the time to
compute concentrations, but its decreasing is not so sharp as the other
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Figure 6.11 – Overall oil production rate of case 2
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Figure 6.12 – Computational time according to the number of processors
of case 2

variables. Furthermore, the grid is more refined and as a consequence
the cost of the grid-related operations is higher. The grid operations in
the main routine that computes concentrations are explicit and thus its
scalability is higher.
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Figure 6.13 – Global speedup of case 2

Table 6.4 – Computational times in seconds of case 2

Prcs Total Time Init. Trans. Conc. Salinity LS Solving

1 41196.65 4.833 466.2 4703.7 82.00 35432.4
2 26555.64 4.525 296.0 2574.4 57.94 23339.6
4 20290.73 4.264 225.6 1590.7 47.97 18242.7
8 12824.40 4.252 114.1 1043.8 28.79 11521.7

16 6056.945 7.186 49.79 514.05 13.73 5420.73
32 2839.301 12.05 24.75 288.88 6.186 2480.31
64 1688.573 17.69 14.74 272.75 3.218 1353.55

128 1222.323 38.79 9.253 186.51 2.699 950.441

Figure 6.14 shows the contribution of the main routines on the total
computational time. The results are close to the ones of the last case.
Again, the solving of the system of linear equations is by far the most time-
consuming operation. This operation however is executed by an external
solver (PETSc [4]) and as a consequence we do not have much control on
it. The speedup curve of the linear system solving is not presented here
because it is very similar to the global speedup.
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Figure 6.14 – Contribution on the total computational time of case 2

6.3 Case 3

The third case is a polymer flooding. There is a single injector well sur-
rounded by four producer wells, as illustrated in Figure 6.15. It is injected
a mixture of water, polymer, chloride, and calcium at a constant flow rate.
The producer wells operate with constant bottom hole pressure. The reser-
voir has length 1640.5 ft, width 1640.5 ft, and thickness 10.8 ft. The coarse
grid is 15x15x3, given a total of 675 grid blocks. Permeability and porosity
obey a 3D stochastic distribution. Initially the aqueous phase pressure
and saturation are uniform and have values of 100 psi and 0.38, respec-
tively. The simulation runs until 1500 simulation days. Table 6.5 shows
the main characteristics of this case.

Similarly to the previous cases, this case was validated against an
older serial version of the simulator. The results are presented in Fig-
ures 6.16, 6.17, and 6.18. Again, it was used 1, 2, 4, and 8 processors in
UTCHEMP and the variables compared are the aqueous phase pressure,
aqueous phase saturation, and the oil production rate. The results are in
good match.

For performance evaluation, the grid size was increased to 500x500x4,
which gives a total of 1,000,000 grid blocks. The wells were placed in a
similar pattern. It was used 1, 2, 4, 8, 16, 32, 64, 128, and 256 processors.
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Figure 6.15 – Case 3 aqueous phase saturation after 600 simulation days

Table 6.5 – Case 3 properties

Property Value
Reservoir lenght 1,640.5 ft
Reservoir width 1,640.5 ft
Reservoir thickness 10.8 ft
Coarse grid 15x15x3 (675)
Fine grid 500x500x4 (1000000)
Number of components 9
Porosity from 0.184 to 0.416
Permeability in x dir. 477.83 to 3,423.3 mD
Permeability in y dir. equal to perm. in x dir.
Permeability in z dir. 762.79 to 3,025.8 mD
Initial water saturation 0.38
Initial reservoir pressure 3000 psi
Depth 2000 ft
Number of injector wells 1
Number of producer wells 4
Simulation days 1500 days

The final simulation time was reduced from 1500 days to only 50 days,
otherwise the simulation running with small number of processor would
take much more than one day to finish, which is the maximum simulation
time allowed in TACC. Figure 6.19 shows the results of the total computa-
tional time, while Figure 6.20 presents the corresponding speedup. The
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Figure 6.16 – Average aqueous phase pressure of case 3
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Figure 6.17 – Average water saturation of case 3

computational time could be reduced up to 130 times, from almost half
a day running with a single processor to about five minutes running with
256 processors. As the previous case, the speedup is similar to what was
predicted by the Gustafson-Barsis’s Law. In fact, with up to 8 processors
only a single cluster node is used and thus a single memory module is
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Figure 6.18 – Overall oil production rate of case 3

used. With more processors, more nodes are used and consequently more
memory is also available, contributing to make the simulation faster.
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Figure 6.19 – Computational time according to the number of processors
of case 3

In Table 6.6 the computational time of the main operations are pre-
sented. On the other hand, the contributions on the total computational
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Figure 6.20 – Global speedup of case 3

time of those operations are shown in Figure 6.16. As before, the bot-
tleneck is still solving the system of linear equations. It is interesting to
note that the drop on the computational time of this operation is relatively
small with up to 8 processors and is sharp with more than 8 processors.
Furthermore, as in the previous cases the initialization cost increase as the
number of processor increases. With 256 processors, the time required to
make the initialization is about 20% of the total time.

Table 6.6 – Computational times in seconds of case 3

Prcs Total Time Init. Trans. Conc. Salinity LS Solving

1 42044.4 11.79 949.7 4065.5 93.77 36533.2
2 29265.9 10.94 643.3 2133.1 66.39 26190.2
4 24969.1 11.70 564.9 1403.8 57.77 22780.8
8 21157.3 10.35 273.2 844.32 33.58 19899.1

16 9733.43 10.74 97.59 408.47 15.42 9157.53
32 3148.89 16.60 39.36 194.72 7.101 2869.94
64 1515.85 27.48 18.97 96.641 3.178 1329.86

128 787.085 49.10 9.603 63.000 1.653 653.203
256 321.943 61.46 6.022 55.234 1.236 185.550
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Figure 6.21 – Contribution on the total computational time of case 3

6.4 Case 4

The fourth case is an aquifer recovering simulation. The reservoir initial
water and oil saturations are uniform and their values are 0.65 and 0.35,
respectively. There are an injector and a producer wells that are placed
according to the classic five-spot problem: one well at bottom left corner
and the other one at the top right corner, as described in Figure 6.22. A
mixture of water, surfactant, and polymer, which forms a microemulsion
phase, is injected, helping to move the oil out of the reservoir. The reser-
voir has dimensions 250 x 250 x 10 ft and the coarse grid used is 11 x 11
x 2 (242 grid blocks). The reservoir is also homogeneous with porosity
0.20, x and y permeabilities 500 mD, and z permeability 50 mD. Table 6.7
presents the main features of the case.

Figures 6.23, 6.24, and 6.25 shows the validation results for this case.
Differently from the other cases, the validation results differ. However,
Figure 6.25 reveals that the oil production rate is quite unstable and thus a
small difference on computations may lead to a relatively large difference
on the final results. In fact, the code was extensively debugged and no
errors were found. It was verified that even if the linear system is exactly
the same, the results may differ a little bit depending on the number of
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Figure 6.22 – Microemulsion phase saturation after 350 simulation days
of case 4

Table 6.7 – Case 4 properties

Property Value
Reservoir lenght 250 ft
Reservoir width 250 ft
Reservoir thickness 10 ft
Coarse grid 11x11x2 (242)
Fine grid 400x500x10 (2000000)
Number of components 11
Max. number of phases 3
Porosity 0.20
Permeability in x dir. 500 mD
Permeability in y dir. 500 mD.
Permeability in z dir. 50 mD
Initial water saturation 0.65
Initial reservoir pressure 2500 psi
Depth 1000 ft
Number of injector wells 1
Number of producer wells 1
Simulation days 1500 days

processors used. This fact combined with some instabilities probably
explain why the results are a little different. Despite the results being a
little different, it is worth noting that all validation results follow a similar
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pattern, indicating that the code is probably right.
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Figure 6.23 – Average aqueous phase pressure of case 4
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Figure 6.24 – Average water saturation of case 4

Still referencing Figure 6.25, the oil production is close to zero at the
beginning of the simulation due to the small relative permeability of phase
oil. Its value is about 10−4, while the relative permeability of the aqueous
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Figure 6.25 – Overall oil production rate of case 4

phase is about 10−1. As a consequence, the oil mobility is small and thus
the oil being produced, which is calculated using Equation (5.11), is also
small. Another aspect of Figure 6.25 that may seem strange is the oil flow
rate dropping to zero at about 700 days. What happened is that phase
oil starts to be considered a microemulsion phase because the surfactant
concentration surpass a predefined value.

The grid used to evaluate UTCHEMP’s performance in this case has
2,000,000 (400x500x10) grid blocks. The number of processors used is 1, 2,
4, 8, 16, 32, 64, 128, and 256. As in the previous case, the final simulation
time was reduced to make possible the running of the cases with small
number of processors. The total computational time decreased from ap-
proximately 2,5 hours with one processors to only about 4 minutes with
256 processors, as one may see in Figure 6.26. The speedup is plotted in
Figure 6.27. Again, the speedup is similar to what Gustafson-Barsis’s Law
predicts, but in this case it saturates with large number of processors, as
predicted by the Amdahl’s Law.

Table 6.8 presents the computational time of some UTCHEMP"s main
operations, whilst Figure 6.28 shows their contribution on the total com-
putational time. The solving of the system of linear equations is the main
contributor to the computational time only when not so many processors
are used. With 256 processors, the initialization time, which involves op-
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Figure 6.26 – Computational time according to the number of processors
of case 4
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Figure 6.27 – Global speedup of case 4

erations such as reading, transferring the input data, and setting up the
reservoir initial state, takes most of the simulation time. This is actually
natural, since there is much communication in this process and the num-
ber of time steps is relatively small.

This case was also used to evaluate inactive grid blocks. As described
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Table 6.8 – Computational times in seconds of case 4

Prcs Total Time Init. Trans. Conc. Salinity LS Solving

1 9086.82 68.93 151.0 1268.0 73.36 7405.0
2 8140.34 66.23 95.64 684.55 41.23 7178.1
4 6448.90 67.88 81.49 462.36 31.10 5751.9
8 3585.60 67.56 45.07 287.22 20.27 3132.9

16 2354.57 63.72 22.11 143.65 9.256 2099.3
32 1143.43 71.43 8.592 77.279 4.488 973.84
64 609.544 79.13 3.892 45.771 2.318 474.68

128 370.061 90.65 2.237 30.796 1.259 242.94
256 245.197 120.9 1.290 24.866 0.818 95.585
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Figure 6.28 – Contribution on the total computational time of case 4

in section 5.1.2, inactive grid blocks may be used to more accurately rep-
resent the reservoir geometry. They behave like impermeable boundaries
and thus no flux through them should occur. In this case eight grid blocks
at the middle of the reservoir was set as inactive and as a consequence
the fluids should flow around the inactive cells. Figure 6.29 shows the mi-
croemulsion phase saturation after 355 simulation days using the coarse
grid. As expected, the microemulsion saturation at inactive grid blocks
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remained null, indicating that in fact there is no flow through them.

Figure 6.29 – Microemulsion phase saturation after 355 simulation days
using inactive cells of case 4

6.5 Case 5

The fifth case is a two-phase problem solved using EFVLib. The grid is hy-
brid, unstructured, and it is nearly cylindrical around the wells. There are
8073 nodes, 35286 tetrahedra, 544 hexahedra, 544 prims, and 576 pyra-
mids. Its shape is similar to Brazil’s territory, as illustrated in Figure 6.30.
There are two horizontal producer wells and three vertical injector wells.
The injectors injects a total of 50 ft3/day. The domain is supposed homo-
geneous and isotropic with permeability 40 mD and porosity 0.1. Table
6.9 summarizes the case properties.

Both water and oil are considered incompressible and immiscible.
The problem is modelled by the water mass conservation equation

∂

∂ t

�

φSw

�

=∇·
�

λwK(∇P −γw∇h )
�

+q ′′′w , (6.1)

by the global mass conservation equation

∇·
�

λTK(∇P −γT∇h )
�

+q ′′′T = 0, (6.2)
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Figure 6.30 – Illustration of the grid and wells of case 5

Table 6.9 – Case 5 properties

Property Value
Reservoir lenght 197 ft
Reservoir width 205 ft
Reservoir thickness 132 ft
Grid nodes 8073
Tetrahedra 35286
Hexahedra 544
Prims 544
Pyramids 576
Number of phases 2
Number of components 2
Porosity 0.10
Permeability 40 mD
Initial oil saturation 1.0
Number of injector wells 3
Number of producer wells 2
Simulation days 200 days

and by the continuity of the fluid saturations

Sw +So = 1 (6.3)
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There are three equations and three unknowns (P , Sw , and So ). Since the
mobility λ depends on the phase saturations, the problem is nonlinear.
In order to solve the above equations, it is used an IMPES method: the
global mass conservation equation is solved implicitly to obtain the pres-
sure field and then the saturations are computed explicitly with the other
two remaining equations. This method however has stability constraints.
For this case, it was necessary a time step of 0.001 day, which required
200000 iterations to reach 200 days. Once the time step is really small,
the saturation field barely changes from a simulation time to another and
thus nonlinearity effects are negligible. In Figure 6.31 it is illustrated the
water saturation field after 170 days.

Figure 6.31 – Saturation field after 170 days of case 5

The case was run with 1, 2, 4, 8, 16, and 32 processors. In Figure 6.32
it is illustrated the division of the grid according to the number of pro-
cessors. All nodes within a same subdomain have same color. It is worth
noting that a subdomain may be disconnected, as it happens when four
processors are used. This however is not a problem since the method-
ology using ghost nodes is quite general and does not require connected
subdomains.

The average values of pressure, water saturation, and oil production
rate are plotted in Figures 6.33, 6.34, and 6.35. As one may note, the re-
sults match, which is strictly necessary to a parallel simulator. Figure 6.36
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(a) 1 processors (b) 2 processors

(c) 4 processors (d) 8 processors

(e) 16 processors (f ) 32 processors

Figure 6.32 – Grid division of case 5 using different number of processors
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shows the total computational time spent by the simulation and Figure
6.37, the corresponding speedup. The speedup is almost linear using up
to 8 processors. If more processors are employed it will be required to use
more than one cluster’s node, thus increasing the communication cost.
The current case is actually very small. When for example 32 processors
are used, each processor handles only about 250 nodes. Despite being
small, this case shows that it is possible to achieve a good speedup even
when the case is small.
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Figure 6.33 – Average pressure of case 5

Figure 6.38 shows the contribution of some operations on the total
computational time for different number of processors. Since there is a
lot of time steps along the simulation (200000), the contribution of read-
ing, dividing, and assembling the grid on the total computational time is
negligible. The main computational cost comes from the computation
of water saturation and pressure. In fact, the contribution of pressure
computation grows as the number of processors increase, while the con-
tribution of water saturation computation decrease. This is reasonable,
because the computation of pressure is implicit – a linear system is solved
to obtain the field – and thus data must be exchanged between the pro-
cessors. Furthermore, the computation of the water saturation is explicit.
All of the processors have the data they need to compute the new water
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Figure 6.34 – Average water saturation of case 5

Time [day]
0 50 100 150 200

A
ve

ra
g

e 
O

il 
P

ro
d

u
ct

io
n

 R
at

e 
[f

t3 /d
ay

]

30

35

40

45

50

1 prc
2 prcs
4 prcs
8 prcs
16 prcs
32 prcs

Figure 6.35 – Overall oil production rate of case 5

saturation field based on a new pressure field. The only data exchange
regards the updating of such variable at the ghost nodes. Figure 6.39 and
Figure 6.40 presents the speedup of the pressure and water saturation
computation. It is clear that the former is more scalable than the latter.
In fact, the time spent computing the pressure field gets higher when 32
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Figure 6.36 – Computational time according to the number of processors
of case 5
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Figure 6.37 – Global speedup of case 5

processors are used instead of 16 processors.

Although in the present case the time spent reading, dividing, and
assembling the grid is negligible, it might be relevant if the number of
time steps were much smaller. Figure 6.41 shows the computational time
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Figure 6.38 – Contribution on the total computational time of case 5
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Figure 6.39 – Pressure computation speedup of case 5

according to the number of processors. The cost of reading a grid from
a file is always the same because such operation is executed by a single
processor, no matter the total number of processors allocated. Further-
more, when a single processor is used there is no cost dividing the grid, but
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Figure 6.40 – Water saturation computation speedup of case 5

the cost for assembling is higher because the processor must work on the
whole grid. As the number of processors is increased, the assembling cost
decreases, but the division cost increases. The optimal point happens
when 16 processors are used.
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Figure 6.41 – Computational time of some grid operations of case 5

The quality of the grid division was also evaluated for the present
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case. It was noted that the load balance is an important parameter to
optimize performance. All processors should have almost the same num-
ber of nodes, implying that the number of nodes should be the global
number of nodes divided by the number of processors. This however is
an ideal situation. Assuming the parallel architecture is symmetric, the
performance is ruled by the overloaded processor. The ratio between
the surplus number of nodes and the ideal number of nodes was used to
quantify the load balance. The surplus number of nodes is here defined as
the difference between the number of local nodes and the ideal number
of nodes. There is a different ratio for each processor, but the ratio that
really matters is the maximum. The variation of the maximum ratio are
plotted in Figure 6.42. Note that all values are bellow 3%, which is a nice
result since it indicates that a performance slow down by load inbalance
also should be at most 3%.
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Figure 6.42 – Maximum ratio between the surplus number of nodes and
the ideal number of nodes of case 5

Another aspect concerning the grid division quality is the communi-
cation. The grid division should minimize the size of subdomains’s inter-
faces in order to communicate less data. It is hard however to evaluate if
the division is good because we do not know what is the optimal point.
Actually, even the concept of interface size is abstract. In this study is
straightforward to define the interface’s size as the number of ghost nodes.
From the communication point of view, the quality of the grid division
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is as good as smaller is the ratio between the ghost and the local nodes.
Figure 6.43 shows the average ratio obtained using different number of
processors. It is clear that as the number of processors increases, the
division quality becomes poor. This helps to explain why the speedup
results are not good for more than 16 processors. Nevertheless, it does
not mean that the division quality can be improved because we do not
know what is the optimal ratio.
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Figure 6.43 – Average ratio between the number of ghost nodes and the
number of local nodes of case 5

6.6 Case 6

This case is similar to the last problem considered. A two-phase, incom-
pressible, immiscible model was implemented using EbFVM and IMPES.
However, the grid used here is more refined. It has 1971750 tetrahedra
and 378259 nodes. There are two vertical well: one producer and one
injector, as illustrated in Figure 6.44. We could of course run an even
bigger case, but such case would probably require more memory than
is available when a single processor is used. The properties of this case
are similar to the last cases’s and are summarized in Table 6.10. In this
case however there is no validation step because the physical model is
the same of the last problem.
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Figure 6.44 – Grid and wells of case 6

Table 6.10 – Case 6 properties

Property Value
Reservoir lenght 1000 ft
Reservoir width 500 ft
Reservoir thickness 250 ft
Grid nodes 378259
Tetrahedra 1971750
Number of phases 2
Number of components 2
Porosity 0.10
Permeability 10 mD
Initial oil saturation 1.0
Number of injector wells 1
Number of producer wells 1
Number of time steps 100

Figure 6.45 shows the results of the computational time spent by the
whole simulation according to the number of processors. As expected,
the computational time decreases smoothly as the number of processors
used increase. The corresponding speedup is presented in Figure 6.46.
Up to 8 processors the speedup is close to linear. With more processors
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the communication cost increases and the speedup deviates from linear.
With 128 processors for example the speedup is only about 44. In this case
each processor handles about 3000 nodes, which is not so many.
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Figure 6.45 – Computational time according to the number of processors
of case 6
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Figure 6.46 – Global speedup of case 6
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Figure 6.47 shows the contribution of the main operations to the global
computational time. Again, the most costly operations are the pressure
and water saturation computation. As the number of processors increases,
the cost to compute the water saturation becomes smaller while the cost
to compute the pressure is relatively the same. In fact, one may see from
the speedups illustrated in Figures 6.48 and 6.49 that the water saturation
computation is a highly scalable operation. The computation is explicit.
As long as the pressure field are updated at the ghost nodes, no commu-
nication is necessary except that for the updating of the saturation values
at the ghost nodes. The computation of the pressure field, on the other
hand, is implicit and thus demands the assembling and solving of a linear
system. As the number of processors increase, the communication be-
comes more expensive and the speedup saturates. The speedups evalu-
ated in this case are actually similar to the ones of the case 5. However, the
performance deteriorates at a higher number of processors since the grid
have many more elements and thus the grid related operation contributes
more to the global computational time.
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Figure 6.47 – Contribution on the total computational time of case 6

Figure 6.50 shows the computational time associated to some of the
operations required to build the grid computational structure. The results
are similar to the ones obtained in the last case. The assembly cost is high
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Figure 6.48 – Pressure computation speedup of case 6

Number of Processors
100 101 102 103

S
p

ee
d

u
p

100

101

102

103
Water Saturation Computation Speedup

Figure 6.49 – Water saturation computation speedup of case 6

with small number of processors, but it decreases sharply as this number
increases. With a large number of processors the operations that have
more influence on the computational time are the grid reading and grid
division. However, there is no clear optimal point differently from the last
case. With 16 processors or more the computational time is almost stable.
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As the number of processors increases the cost of division gets higher. The
trend is to have a higher total computational cost if more processors are
used.
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Figure 6.50 – Computational time of some grid operations of case 6

Figures 6.51 and 6.52 present the result of the variables used to eval-
uate the quality of the grid division. The load balance parameter is sur-
prisingly good for small number of procesors. With two processors, it is
almost zero, indicating that the load balance is almost perfect. Even with
a highest number of processors the ratio is less than 3%. The communica-
tion parameter on the other hand follows the same pattern noted in the
last case, although the values are much smaller than that case. With 32
processors, the ratio is about 11% in this case whereas it is about 60% in
the other one. This of course happens because the grid in this case has
many more nodes than the last one’s grid.
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Figure 6.51 – Maximum ratio between the surplus number of nodes and
the ideal number of nodes of case 6
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Figure 6.52 – Average ratio between the number of ghost nodes and the
number local nodes of case 6



CHAPTER

7
Conclusions

7.1 Summary

This study was developed with the objective of improving computational
performance of numerical reservoir simulators. The methodology to im-
prove performance is by the application of parallel computing. Parallel
computing was employed by using several processors concurrently. Each
processor works on a small part of the problem. By reducing the size
of the local problem it is possible to sharply increase the overall perfor-
mance. The total computational time is the computational time spent by
the overloaded processor. Ideally the problem is divided evenly among
the processors and as a consequence the speedup is equal to the number
of processors.

There are three main types of parallel architecture concerning the
memory arrangement: shared, distributed, and hybrid-memory comput-
ers. Shared-memory computers are commonly limited to a few num-
ber of processors. Distributed-memory computers, on the other hand,
may have a large number of processors, each one using a distinct mem-
ory module, but require communication between processors, which may
slow down the performance. The code developed in this study uses the
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MPI paradigm and hence can be used in either distributed or hybrid-
memory computers.

Parallel computing was applied to two reservoir simulation softwares:
UTCHEM and EFVLib. UTCHEM is a three-dimensional, multicompo-
nent, multiphase, compositional, variable temperature, finite-difference
reservoir simulator developed at The University of Texas at Austin. It can
be used to simulate enhanced recovery of oil and enhanced remediation
of aquifers. EFVLib, on the other hand, is a library that helps its user to de-
velop its own codes using the Element-based Finite Volume Method. This
library has several methods that enable the user to read an unstructured
grid, assemble control volumes, easily access grid entities, evaluate shape
functions, among other features. Despite being developed for application
on reservoir simulation, EFVLib is actually general and can be employed
for the development of any software that uses the EbFVM.

The idea of employing parallel computing on two softwares instead
of just one is that in UTCHEM we deal with complex physical models but
the grid is structured and Cartesian. The grid treatment in EFVLib on
the other hand is much more complex since it deals with unstructured
grids. It was not necessary however treat complex physical models be-
cause such models is the final user who implements. So, in this study
there was the opportunity of developing methodologies for both struc-
tured and unstructured grids, as well as complex physical models.

The parallelization methodology employed in both cases was based
on domain decomposition. It is recognized that the main computational
cost comes from grid related operations. Each processor works only on
a part of the global domain. In UTCHEM the domain is divided taking
the direction y as the reference. At the borders of each subdomain cre-
ated there are ghost cells, which are additional grid blocks used to repre-
sent and store values from grid blocks that are in a neighbor subdomain.
PETSc was used to solve systems of linear equations due to its efficiency
and its parallel computing support. Additionally, it was implemented in
UTCHEM inactive cells and a more user-friendly input file format. The
parallel version of UTCHEM was called UTCHEMP to distinguish it from
its serial version.

The division of the grid in EbFVM is more complex because the grid
is unstructured and thus there is no predefined rule of how the control
volumes are connected to each other. The notion of control volumes (or
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nodes) being connected to each other lead to the representation of the
grid as a graph. It was used an external graph partitioning library to par-
tition the graph representation of a grid respecting the load balance and
minimum communication criteria. Based on the graph, the local grids
are assembled and their borders are extended to contemplate nodes that
are in other subdomains. This nodes are called ghost nodes and their
purpose is the same of the ghost cells used in UTCHEM: represent and
store values from nodes that are in another subdomain. Furthermore,
proper methodologies were used to treat wells and boundaries. As in
UTCHEM, PETSc was used to solve in parallel system of linear equation
rising from the simulations.

7.2 Conclusions

Four cases were executed in UTCHEMP. Each one of them tries to evaluate
different physical models from the simulator. There was a good agree-
ment between the validation results of UTCHEM and UTCHEMP running
with different number of processors. The only exception was the forth
case. It is believed however that the code is correct and the difference is
due to some instability and to the fact that the result from the linear sys-
tem solving is not exactly the same when different number of processors
is used.

It was verified in UTCHEMP that usually the more expensive oper-
ation is the solution of system of linear equations. This operation is the
main responsible by the parallel performance achieved by the software.
The evolution of the speedup is not so good when a single cluster node is
used probably because there is not much memory available. With more
nodes the speedup curve tends to be parallel to the ideal speedup, as
predicted by the Gustafson-Barsis’s Law. This behaviour is more evident
when the grid size is bigger and as a consequence more memory needs to
be allocated.

Two EFVLib cases were presented. In both of them it was simulated
a two phase flow. Since the physical model is the same, only the first case
were used to validate the software. The validations results are in good
match. The first case has a small however complex grid. With 8 processors
or more the speedup saturates. On the other hand, the second case has
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many more control volumes and thus it was achieved a better speedup.
Its speedup curve is closer to the Amdahl’s Law.

It was also verified in EFVLib that, as the number of processors in-
creases, the time require to divide the grid becomes bigger, but the time
to assemble the grid at the same time gets smaller. There should be an
optimal number of processors to minimize the cost to initialize a grid.
Another analysis was made was referred to the quality of the grid division.
There is two main aspects to consider: load balance and communication.
It was verified that the load unbalance is of at most 3%, which is relatively
small. The communication was evaluated by the ratio of ghost to local
nodes. As the number of processors increases, such ratio grow, reaching
about 60% in the first case. The increasing on the communication cost
helps to explain why in some cases the performance gaining using more
processors is not what would be desired.

Although the speedup is not so close to the ideal speedup, the per-
formance improvement is really significant. Depending on the number
of processors used, the software can be several times faster. In the forth
case for example UTCHEMP was about 130 times faster when running
with 256 processors. It is almost impossible to get such performance im-
provement simply by making the software algorithms more efficient. It is
strongly recommended here to take advantage of the computer architec-
tures available nowadays. In fact, the trend is to use parallel computers
and our codes should adapted to that.

7.3 Suggestions for future studies

For future studies it is recommended:

• Extend the validation and evaluation of UTCHEMP. This is a huge
simulator and there was not enough time to test all of its features;

• Evaluate the PETSc options used in both UTCHEMP and EFVLib.
Investigate what is the configuration that optimizes performance;

• Use ParMETIS instead of Metis to improve the division of graphs
representing grids;

• Create a code interface in EFVLib to use the non-linear system solv-
ing tools available in PETSc;
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• Evaluate EFVLib with more complex simulation models.
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APPENDIX

A
UTCHEM's Input File

The IPARS framework enables the implementation of a new and much
more flexible format for the input files. To each variable that needs data
from the input file it is associated a keyword. The keyword may be placed
in whichever position in the input file. This is different from the original
UTCHEM’s input file format, that supported only placing each variable in
its own – and single – place. If the datum was misplaced, the simulation
could not be executed or, in the worst case, the datum could be assigned
to a wrong variable leading to wrong results.

The variables read from the input file are separated in scalars and
arrays. Datum from a scalar variable can be placed in the input file as
the example bellow

V AR = 5

This means that the variable whose keyword is “VAR” will be set as 5.
The equal sign is not mandatory and thus may be omitted. For array
variables, the difference is that it is necessary to specify to each position in
the array data should be assigned. In the following example, the keyword
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represents the whole array

AR R () = 1 2 3 4

In this case, the variable whose keyword is “ARR” is initialized with (1, 2, 3, 4).
One, however, may initialize each component at a time, as bellow

AR R (1) = 1

AR R (2) = 2

AR R (3) = 3

AR R (4) = 4

Furthermore, it is also possible to initialize a subarray from the original
array:

AR R (1 TO 2) = 1 2

AR R (3 TO 4) = 3 4

Finally, it is worth to comment that if there is less data following a keyword
than it is expected, the last components are filled with the last datum. This
is very convenient. If, for example, ARR is an array with equal components
(let’s suppose their values are 6), then in the input file one may write

AR R () = 6

Matrices are treated as arrays of arrays and thus the same rules apply.
However, despite the following initialization

M AT (, ) = 1 2 3

4 5 6

7 8 9

is instinctive, it should be avoided. It was discovered that the IPARS frame-
work, from were comes the function that reads the data, puts the first row
of data in the first column of the matrix, the second row in the second col-
umn, and the third row in the third column. Thus, unless the user knows
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IPARS profoundly, it is recommended that the data should be placed as
bellow

M AT (1, ) = 1 2 3

M AT (2, ) = 4 5 6

M AT (3, ) = 7 8 9

Two more observations should be done. First, to each variable it is
associated a data type. In order to avoid reading errors, data following a
keyword must respect the type. In the special case in which the data is
a string of characters, it must be between quotation marks and must not
exceed the maximum number of characters specified for it. The second
observation is that comments are allowed. Whatever follow the symbol
$ in the same line is ignored. This is very convenient if the user wants to
add observations concerning the data from the input file.





APPENDIX

B
Example of code using EFVLib

in parallel

Listing B.1 have an example of application of EFVLib with the parallel
support implemented in this work. The purpose of this example is only
explain the basic modifications required to run a case in parallel. More in-
formation about how to use the library may be found in [18]. The example
is a two-dimensional heat transfer problem. There are two boundaries –
TOP and OTHER –, both of them with prescribed temperature.

Listing B.1 – Example case using EFVLib with parallel processing

1 /∗ Grid
2

3 TOP_1 TOP_0
4 6 −−−−−−7−−−−−− 8
5 | / | \ |
6 | 7 / | \ 4 |
7 OTHERS_0 | / | \ | OTHERS_5
8 | / 6 | 5 \ |
9 | / | \ |

10 3 −−−−−−4−−−−−− 5
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11 | \ | / |
12 | \ 1 | 2 / |
13 OTHERS_1 | \ | / | OTHERS_4
14 | 0 \ | / 3 |
15 | \ | / |
16 0 −−−−−−1−−−−−− 2
17 OTHERS_2 OTHERS_3
18 ∗/
19

20 int main( int argc, char∗ argv[] ){
21 PetscInitialize (NULL, NULL, (char∗)0, NULL );{
22 MPICommunicator world;
23

24 int numberOfVertices = 9;
25 GridDataPtr globalGridData;
26 if ( world.rank() == 0 ){
27 globalGridData = ReadGrid::Grid2D( "grid" );
28 }
29

30 // Grid division
31 GridDivider gridDivider;
32 GridDividerOutputPtr gridDividerOutput;
33 if ( world.rank() == 0 ){
34 gridDividerOutput = gridDivider.divide( globalGridData );
35 }
36 else{
37 gridDividerOutput = gridDivider.divide();
38 }
39

40 // GridBuilder
41 GridBuilder builder;
42 GridPtr localGrid = builder.build( gridDividerOutput−>localGridData );
43

44 // Diffusive Operator
45 ScalarOrderedFieldOnVerticesPtr temperature( new
46 ScalarOrderedFieldOnVertices( localGrid−>getNumberOfVertices(),
47 "T", "oC", "temperature" ));
48 Tensor2DSphericalPtr conductivity( new Tensor2DSpherical( 1.0 ) );
49 TensorConstantPropertyPickerOnElementsPtr condutivityPicker( new
50 TensorConstantPropertyPickerOnElements( conductivity ) );
51 DiffusiveOperatorComputer operatorComputer( localGrid, condutivityPicker );
52 VectorOrderedFieldOnFacesPtr diffusiveOperator = operatorComputer.compute();
53

54 // Linear System
55 PetscMaskPtr mask( new
56 PetscMask( localGrid−>getNumberOfLocalVertices(), temperature−>getValues() ) );
57 IntVectorPtr localToPetsc = localGrid−>getLocalToPetscMapping();
58 mask−>setLocalToGlobalMapping( localToPetsc );
59 mask−>setTolerance( 1e−9 );
60 mask−>setType( "gmres" );
61 mask−>setPreconditioner("sor");
62

63 PetscMatrixPtr matrix = StaticPointerCast< PetscMatrix >( mask−>getMatrix() );
64 DoubleVectorPtr independent =mask−>getIndependentVector();
65
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66 // Matrix
67 foreach( ElementPtr element, localGrid−>getInternalElements() ){
68 InternalFacePtrArrayPtr internalFaces = element−>getFaces();
69 foreach( InternalFacePtr face, (∗internalFaces) ){
70 int vertexLocalHandle = 0;
71 foreach( VertexPtr vertex, element−>getVertices() ) {
72 double coef = −(∗diffusiveOperator−>getValue( face ))[ vertexLocalHandle ];
73 VertexPtr backVertex =
74 StaticPointerCast< efvlib::Vertex >( face−>getBackwardNode() );
75 if ( localGrid−>isVertexLocal( backVertex ) ) {
76 matrix−>addValue( backVertex−>getPetscHandle(),
77 vertex−>getPetscHandle(), coef );
78 }
79 VertexPtr forwardVertex =
80 StaticPointerCast< efvlib::Vertex >( face−>getForwardNode() );
81 if ( localGrid−>isVertexLocal( forwardVertex ) ) {
82 matrix−>addValue( forwardVertex−>getPetscHandle(),
83 vertex−>getPetscHandle(), −coef );
84 }
85 vertexLocalHandle++;
86 }
87 }
88 }
89

90 // Boundary condition
91 ParserPtr parser(new Parser("../AppParallelTutorial/BoundaryConditions.txt"));
92 BoundaryConditionBuilder bcBuilder;
93 BoundaryConditionSetPtr boundaryConditions =
94 bcBuilder.build( localGrid−>getBoundaries(), parser−>getRoot());
95

96 matrix−>initialize();
97 foreach( DirichletBoundaryConditionPtr bc,
98 boundaryConditions−>dirichletBoundaries ){
99 BoundaryPtr boundary = bc−>getBoundary();

100 foreach( VertexPtr vertex, boundary−>getVertices() ){
101 if ( !localGrid−>isVertexLocal( vertex ) ) {
102 continue;
103 }
104

105 int petscIndex = vertex−>getPetscHandle();
106 PetscInt petscArray[1];
107 petscArray[0] = petscIndex;
108 MatZeroRows( matrix−>getPetscFormatMatrix(), 1, petscArray,
109 1.0, NULL, NULL );
110

111 int localIndex = vertex−>getHandle();
112 (∗independent)[ localIndex ] = bc−>getValue( vertex );
113 }
114 }
115

116 mask−>solve();
117

118 ScalarFieldOnVerticesSynchronizerPtr sync(new
119 ScalarFieldOnVerticesSynchronizer(
120 gridDividerOutput−>synchronizerVerticesVectors));
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121 sync−>synchronize( temperature );
122

123 FieldDivider< efvlib::Vertex, double > fieldDivider(
124 gridDividerOutput−>verticesOfSubdomains );
125

126 if ( world.rank() == 0 ) {
127 ScalarOrderedFieldOnVerticesPtr globalTemperature( new
128 ScalarOrderedFieldOnVertices(globalGridData−>coordinates.size(),
129 "T", "oC", "temperature" ) );
130 fieldDivider.gather( temperature, globalTemperature );
131

132 TecPlotSaveFile::vString varNames;
133 varNames.push_back("Temperature");
134 TecPlotSaveFile tecPlotSaveFile;
135 tecPlotSaveFile.initializeForTecplot(globalGridData, "../AppParallelTutorial",
136 "Output.dat", varNames);
137 tecPlotSaveFile.iniAppendForTecplot( 0.0 );
138 tecPlotSaveFile.appendFieldForTecplot( ∗globalTemperature );
139 tecPlotSaveFile.endAppendForTecplot();
140 tecPlotSaveFile.close();
141 }else{
142 fieldDivider.gather( temperature );
143 }
144

145 PetscFinalize();
146 }

MPI methods can only be used after the MPI environment is initial-
ized. The MPI can be initialized only once during a program execution.
Such operation is performed at line 21 by the initialization of PETSc. The
actual method in C/C++ to initialize a MPI environment is MPI_Init,
but since PETSc also use MPI methods, this calling is hidden inside the
method PetscInitialize.

All processors in a parallel execution run the same code. However,
they usually do not perform the same operations. Each one of them have
an index, usually called rank, that may be used to distinguish what are the
operations that must be executed by the processor. It is usual to define the
processor whose rank is 0 as the master processor. The master processor
will execute the operation that must be serial. A class from the library
BOOST named communicator – renamed here to MPICommunicator –
is used to identify what is the rank of the current processor.

The operation of read a grid from a file is executed by a single proces-
sor: the master processor. The reading is performed at line 27 and right
berfore that it is checked if the processor is in fact the master processor.
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The grid division is executed by calling the method divide of an instance
of the class GridDivider. Only the master processor pass the global
grid data as a parameter of the method since only this processor have
the data of the global grid. The other processors call the method divide

without passing any argument. After calling such method all processors
receive the data of their local grid and the data required to instantiate
some communication classes detailed later.

Lines 57 and 58 are another additional piece of code required for
running the program in parallel. A computational interface was created
to use either EFVLib’s original solver or PETSc. The class PetscMask is
derived of such interface and should be used if PETSc is intended as the
solver, remembering that from the EFVLib’s solvers only PETSc has sup-
port for parallel running. When the program runs in parallel, PetscMask
requires a mapping from the local indexes to the global indexes used in
PETSc. Such mapping is available in the class Grid through the method
getLocalToPetscMapping. The user only needs to get the mapping
and set it inPetscMaskusing the methodsetLocalToGlobalMapping.

Pay attention at lines 75, 81, and 100. The purpose of all of them is to
check if the vertex is local. One should remember that all computations
are performed for the local vertices, since ghost nodes stand only to store
values from other computational domains. This includes the assembling
of a linear system: each processor assembles only the lines of its local
vertices.

At line 118 the class that performs the updating of values at ghost
nodes is instantiated. This class requires some data that comes from the
grid division and may be accessed through the grid division output. The
temperature field is updated using this class at line 121.

Lines 123 to 143 stand for exporting results. Before line 123 the tem-
perature field still distributed across the processors. However writing a
field into a file is a serial operation and thus all processors must sent their
data to the master processor. Such operation is execute using the class
FieldDivider. An instance of this class is created at line 123 and used
at lines 130 and 142. Only the master processor pass two parameters to
the method, one of them being the a global field in which the data received
from the other processors will be stored. Lines after line 130 would be the
same whether the code were parallel or not.
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Finally PETSc and the MPI environment are finalized at line 145. After
this line no MPI operation can be executed.

Despite the description of the example above being a little long, the
point is that there is not many modifications to use EFVLib’s parallel sup-
port. They can be summarized in the following: initialize and finalize
PETSc at the beginning and at the end of the code, respectively; let only
one processor read a grid; divide the grid; ensure that the processors cal-
culate variables only at their local vertices; update the values of a field at
the ghost nodes whenever such field is recalculated; and collect the fields
when results of the simulation should be exported.


