NUMERICAL MODELLING OF FLOW OVER COMPLEX TERRAIN

F. T. BOÇON¹ C. R. MALISKA²
¹Departamento de Engenharia Mecânica - UFPR
CP 19011 - CEP 81531-990 - Curitiba - PR - Brasil - E-mail: bocon@demec.ufpr.br
²Departamento de Engenharia Mecânica - UFSC
CP 476-CEP 88040-900 - Florianópolis-SC-Brasil - E-mail: maliska@sinmec.ufsc.br

INTRODUCTION

The study of the flow at the atmospheric boundary layer has been intense over the last years. A more comprehensive understanding of the complex phenomena involved in this particular type of flow is being sought, aiming the analysis of structural implications due to strong winds (neutral atmosphere), the pollutant dispersion under neutral or stable conditions and also for meteorological purposes. The phenomenal increase in computer power over the last two decades has led to the possibility of computing such flows by the integration of the (modelled, time-averaged) Navier-Stokes equations.

Raithby et al [1] employed the k-ε model (with modification in the Cμ value) to calculate the neutrally buoyant flow over the Askervein hill, and compared their numerical results with the experiment made over the real terrain in Scotland. Dawson et al [2] also used the k-ε model (with some modification in the constants of the dissipation equation) to simulate the flow and dispersion over Steptoe Butte (Washington, USA) under neutrally and stably stratified atmosphere. Their results were favorably compared with experimental data, indicating that mathematical models using the eddy viscosity assumption in the turbulence closure could be used to predict the flow and pollutant dispersion over complex terrain. Koo [3] developed a non-isotropic modified k-ε to account for different eddy diffusivities in the lateral and vertical directions in the atmosphere. His model is derived from the algebraic stress model and was applied in one-dimensional problems to predict the vertical profiles of velocity, potential temperature and turbulence variables for horizontal flow in a homogeneous boundary layer. Also, the model was applied in two-dimensional problems to simulate the sea breeze circulation and the manipulation of the atmospheric boundary layer by a thermal fence. Koo’s model is similar to the level 2.5 model of Mellor and Yamada [4]. Recently, Castro and Apsley [5] compared numerical (using a “dissipation modification” k-ε model, as named by the authors) and laboratory data for two-dimensional flow and dispersion over topography.

In the present work we extend the application of Koo’s modified k-ε model to predict three-dimensional neutrally stratified flows over complex terrain. Our final
objective is to calculate the dispersion of pollutants in the atmosphere. The task of computing the concentration field downstream from a pollutant source is obtained from the solution of the concentration equation. To do so, it’s necessary firstly to calculate the velocity field and eddy viscosities in the region of interest.

FLOW MODELLING

The governing equations for the flow are the conservation of mass and momentum, written below in the usual tensor notation.

\[\frac{\partial u_i}{\partial x_i} = 0 \quad (1) \]

\[\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = - \frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 u_i}{\partial x_j \partial x_j} + \frac{\partial}{\partial x_j} \left(-u_i u_j \right) \quad (2) \]

where \(p \) is the pressure deviation with respect to the hydrostatic pressure. Primed variables denote turbulent fluctuations. As we are simulating wind tunnel flows, the Coriolis effect is neglected. Modelling of fluctuation terms are described in the next section.

TURBULENCE MODELLING

In environmental flows the non isotropic character of turbulence is notable, specially in the case of dispersion of a scalar (pollutant) in the flow. For the case of stably stratified flows, for instance, vertical fluctuations are much inhibited due to buoyancy forces (arising from the positive vertical temperature gradient), while horizontal fluctuations are not. Even neutrally stratified flows feature some anisotropy. So, it’s not expected that isotropic turbulence models may well reproduce the non isotropic turbulent diffusion. However, standard k-\(\varepsilon \) is successfully applied for environmental flows calculation where horizontal gradients (of velocity, temperature and turbulence variables) are smaller than the vertical gradients. In these situations, turbulent diffusion is significant only in the vertical direction, and an isotropic model can handle it appropriately. On the contrary, in the problem of pollutant dispersion from a point source, both vertical and horizontal concentration gradients are significant, so are the corresponding turbulent diffusion. For this situations, a better description of the anisotropy in turbulent exchanges is necessary.

In his Ph.D. thesis, Koo [3] proposed a modification on the classic k-\(\varepsilon \) model, through the use of algebraic stress model including wall proximity effects. The resulting model was compared to data and higher order simulations for one and two-dimensional atmospheric flows. The modified k-\(\varepsilon \) reproduced well the observed behaviors.

In this work we extend the application of the Koo’s modified k-\(\varepsilon \) model to three dimensional flow and, in a further work, to dispersion problems. A description of the turbulence model is given below. Detailed description of derivation of the model can be seen in Koo [3]. Following the Boussinesq’s eddy viscosity concept, Reynolds stresses are related to the gradient of the velocity components as

\[-u_i' u_j' = K_{ij}^{\varepsilon} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} k \delta_{ij} \quad (3) \]

Where \(K_{ij}^{\varepsilon} \) is the turbulent eddy viscosity in the j direction. Eddy viscosities (for momentum) are expressed as function of turbulent kinetic energy and its dissipation rate. For the vertical direction:

\[K_{zz}^{\varepsilon} = C_m \frac{k^2}{\varepsilon} \quad (4) \]

And for the horizontal directions:

\[K_{xx}^{\varepsilon} = K_{yy}^{\varepsilon} = C_m \frac{k^2}{\varepsilon} \quad (5) \]

\(C_m \) is the proportionality coefficient for eddy viscosity in the vertical direction. It is defined by function of flow structure (from the algebraic stress model).

\[C_m = \frac{2}{3} \frac{(c_1 - 1) E_7}{E_4 - E_5 E_7 G_M} \quad (6) \]

\(E_4, E_5 \) and \(E_7 \) are functions of \(f \), the wall function which reflects the effect of the ground proximity on the Reynolds stresses.

\[f = \frac{l}{k_{1,zz}} = \frac{C_s k^{2s}}{k_{1,zz}} \quad (7) \]

\(l \) is the turbulence length scale, \(k_s \) is the von Karman constant (=0.4) and \(z \) is distance from the ground. The form of \(E_4, E_5 \) and \(E_7 \) and the constants in equations (6) and (7) can be found in Koo [3]. \(f \) approaches the value of one near the ground (where \(l = k_{1,zz} \) and zero far above.

The \(C_m \) is function of \(G_M \), the mean velocity shear, by

\[G_M = \frac{k^{2s}}{\varepsilon} \left[\left(\frac{\partial u_i}{\partial x_j} \right)^2 + \left(\frac{\partial v}{\partial z} \right)^2 \right] \quad (8) \]

Turbulent kinetic energy and its dissipation rate are computed from their well known prognostic equations:

\[\frac{\partial k}{\partial t} + u_j \frac{\partial k}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\frac{k}{\nu} \frac{\partial k}{\partial x_j} \right) + P_e - \varepsilon \quad (9) \]

\[\frac{\partial \varepsilon}{\partial t} + u_j \frac{\partial \varepsilon}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\frac{k}{\nu} \frac{\partial \varepsilon}{\partial x_j} \right) + C_p \frac{k^2}{\varepsilon} \quad (10) \]
P is the production term due to mean velocity gradients, given by

\[P = -u_i u_j \frac{\partial u_i}{\partial x_j} = K_n \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \frac{\partial u_i}{\partial x_j} \]

(11)

Constants in equations (9) and (10) are those from the standard k-ε model and \(C_n = 0.09 \).

NUMERICAL METHOD

The finite volume method is employed to solve the governing equations in a non-orthogonal generalized curvilinear coordinate system. Co-located arrangement is used for variables storage in the grid, and the QUICK interpolation scheme with source deferred correction term (Lien [6]) is applied on the convection terms, except for turbulence variables where a hybrid scheme (WUDS of Raithby and Torrance [7]) is adopted. Our own code NAVIER is used to solve the governing equations.

In order to verify grid dependent errors, the computations are made in a coarse and in a fine grid. Figure 1 illustrates one of the coarse grids used (inflow boundary at left). Fine grids are 95x41x41. Only half domain is resolved, because of symmetry. Results for coarse and fine grids are nearly identical, as one can notice in figures 2, 3, 5 and 6, where vertical profiles of velocity and turbulent kinetic energy are shown.

![Figure 1 - Vertical view (at the xz symmetry plane) of the coarse grid for hill height 200 mm (42x18x18)](image)

To verify the model performance, in a first step, the above described modified k-ε is applied to simulate wind tunnel experiments. A second series of tests, this time for a full scale experiment, will further be performed.

THE WIND TUNNEL EXPERIMENT

Pollutant dispersion wind tunnel experiments were conducted at the Mitsubishi Heavy Industries, in Nagasaki, Japan, 1991. A report containing the results was obtained directly from that company. Wind tunnel test section is 2.5m wide, 1m high and 16m long. Axisymmetric hills of different heights (0, 100 and 200mm), were positioned with the top located at \((x,y)=(0,0)\). Hill shape can be seen in fig. 1. Streamwise direction is \(x\), lateral is \(y\) and vertical is \(z\). Source of tracer gas was positioned at \((x,y,z)=(-500 \text{ mm}, 0, 500 \text{ mm})\) for hill heights 0 and 100mm, and at \((x,y,z)=(-500 \text{ mm}, 0, 1000 \text{ mm})\) for hill height 200mm. Cases of neutral (\(\Delta T=0\), Pasquill class D) and stable atmosphere (\(\Delta T=-20\text{°C}, \text{Pasquill class E}\)) were performed.

Streamwise velocity, velocity fluctuations, temperature and concentration was measured at various locations.

NUMERICAL EXPERIMENTS AND BOUNDARY CONDITIONS

Three different wind tunnel experiments were computationally simulated. They are designated with a letter - indicating stability class - followed by a number indicating hill height in mm. For the time being, only neutral flows are simulated. At the inflow boundary, velocity and turbulent kinetic energy were specified according to experimental measured values. Length scale is given by

\[l = \frac{C_n^{3/4} k^{3/2}}{\varepsilon} = k z \]

(12)

Outflow conditions are that of zero-gradient for all variables. For velocity, lateral and upper boundaries are impermeable, with zero tangential stresses. For all other variables, lateral and upper boundary conditions are of zero-gradient. Wall functions are invoked to apply boundary conditions appropriate to a rough wall \((z_0=1.5 \text{ cm})\) at the ground. Symmetry conditions are applied at the boundary coincident with the plane of symmetry \((y=0)\).

RESULTS AND DISCUSSION

In order to better evaluate the modified k-ε, computations were also made using the standard model and are presented along with the experimental results. Due to limited space, it's not possible to show all the comparisons made.

Figures 2 and 3 show vertical profiles of the streamwise component \((u)\) of velocity on the symmetry plane \((y=0)\) for the cases D100 and D200 (hill heights 100 and 200 mm respectively). For both cases, the modified and the standard model produced nearly the same velocity profiles. In case D200 the recirculation zone in the lee side of the hill was underestimated. Different inflow turbulent length scales were tested at inflow to verify a possible influence, but it was constated that the flow after the hill top is essentially determined by local conditions. A possible explanation for this model defect would be that the pronounced velocity gradients in this region, due to the three dimensional open recirculation zone (see figure 4), increase the production of turbulent kinetic energy and consequently enhance the eddy viscosities there, thus diminishing the size of the recirculation.

![Figure 2 - Case D100 - vertical profiles of streamwise component of velocity at the symmetry plane \((y=0)\) for different positions upstream and downstream the hill top \((x=0)\)](image)
Figure 3 - Same as fig. 2 but for case D200.

Figures 5 and 6 show vertical profiles of turbulent kinetic energy (k). For the case D200 (fig. 6) it seems that, at the position x=300 mm (which is in the recirculation zone), the level of turbulent kinetic energy is not overestimated by the mathematical model (although there are few experimental values available).

Thus, regarding to the above cited problem of high eddy viscosities in that region, the drawback should be attributed to the dissipation equation, which is underestimating ε, and not to an overestimation of the production of turbulent kinetic energy (P).

Figure 4 - Top view of velocity vectors 10 mm above the ground - case D200.

Figure 5 - Case D100 - vertical profiles of turbulent kinetic energy at the symmetry plane (y=0) for different positions upstream and downstream the hill top (x=0).

Figure 6 - Same as fig. 5 but for case D200.

Figure 7 shows vertical profiles of the eddy diffusivities (for momentum) in the horizontal and vertical directions computed with the modified anisotropic k-ε. It is also shown the eddy diffusivity (isotropic) calculated with the standard model. Despite the different vertical turbulent diffusivity, the results for the modified model were practically identical to those for the standard model. Velocity and turbulent kinetic energy were almost not affected by the anisotropy in the eddy viscosities. In fact, this result was already expected because the flow is neutrally stratified (isothermal). Although this anisotropy did not cause significant alterations in the flow results, this is not expected to be the case in the concentration calculation. In fact, dispersion is very sensitive to the lateral and vertical turbulent diffusion, which are the main mechanisms of the plume spread. For this reason, even in neutral atmospheres, the turbulence anisotropy is responsible for the different lateral and vertical spread rates. In a further work, the non-isotropic modified model will be applied for the calculation of pollutant dispersion.

Figure 8 - Case D200 - Profiles of eddy diffusivity for momentum

Figure 8 shows vertical profiles of eddy diffusivities for turbulent mass transfer. In the modified k-ε, the diffusivities for the vertical and horizontal directions are given respectively by

$$K_v = \frac{k^2}{\varepsilon} \quad K_h = \frac{K_m}{Sc_t}$$

(13) (14)

Sc_t is the turbulent Schmidt number (=0.7) and C_e is the proportionality coefficient, a function of the mean velocity shear (G_u) and wall proximity (θ), above defined (constants can be found in Koo [3]).

$$C_e = \frac{2 (c_{11} - 1) + E_s G_u C_m}{3 (c_{11} + c_{11} \theta) F_4}$$

(15)

For the standard model, the eddy diffusivity (isotropic) for the concentration is given by the usual relation

$$K_e = \frac{K_m}{Sc_t}$$

(16)

Contrary to the situation for momentum eddy diffusivities, the anisotropy for the concentration eddy diffusivities is more pronounced.
CONCLUSIONS

A modified non-isotropic k-ε model is applied to simulate three dimensional flows over complex terrain. The results are similar to those obtained with the standard model, because the flow is neutrally stratified and the turbulence anisotropy is not so significant. The agreement against the wind tunnel results is in general good for the velocity profiles and reasonable for the turbulent kinetic energy. In the recirculation zones, the eddy viscosities are overestimated and thus the size of the recirculation is underpredicted.

ACKNOWLEDGMENTS

We are grateful for the support provided by CNPq and CAPES.

REFERENCES

