QUANTIFICAÇÃO DA DIFUSÃO NUMÉRICA NA SOLUÇÃO DE PROBLEMAS EM COORDENADAS GENERALIZADAS, COM MALHAS ADAPTATIVAS

Antônio Augusto Ulso De Souza
Departamento de Engenharia Química - UFSC
Campus Universitário - Trindade - CP 476
Cep: 88040 - 900 - Florianópolis - SC - Brasil

Clóvis Raimundo Maliska
Departamento de Engenharia Mecânica - UFSC
Campus Universitário - Trindade - CP 476
Cep: 88040 - 900 - Florianópolis - SC - Brasil

SUMÁRIO

Uma alternativa para a quantificação da difusão numérica é proposta por Vahl Davis e Mallison aplicada ao sistema de coordenadas cartesianas. Neste trabalho é feita uma extensão desta proposta para o sistema de coordenadas generalizadas. Um esquema de malhas adaptativas é utilizado para a solução de um problema de escoamento de fluidos, sendo o efeito da difusão numérica analisado em função da adaptação da malha.

1. INTRODUÇÃO

Na solução numérica de problemas de escoamento de fluidos, utilizando-se o método de volumes finitos, especialmente nos casos onde a convectão é dominante, a influência da difusão numérica pode ocasionar graves distorções dos resultados. Diversas estratégias podem ser empregadas para a minimização dos efeitos da difusão numérica, como o refinamento da malha, o uso de funções de interpolação baseadas nas equações de conservação (Schneider e Raw, 1987; Ulso de Souza, 1992), esquemas de interpolação "Skew upward" (Raithby, 1976a; Lillington, 1981) ou a utilização de malhas adaptativas (Gha et al., 1981; Ulso de Souza, 1992).

O elevado custo computacional ocasionado pela excessiva discretização do domínio de cálculo torna, em muitos casos, proibitiva a utilização de uma malha muito refinada. A complexidade e grande dificuldade da implementação de esquemas de interpolação multidimensionais ou baseados nas equações conservativas, nos programas computacionais existentes, é um fator desmotivante para a adoção destas técnicas de interpolação. A presença de coeficientes negativos, nos casos "skew upward", levam a problemas de convergência ou de resultados não realistas (Hassan et al., 1983).

A utilização de malhas adaptativas, que se ajustam A
física do problema, é uma alternativa bastante promissora para minimização da difusão numérica. Durante a solução do problema, a malha deve modificar-se de acordo com as informações dos passos de solução. A geração da malha passa a estar então acoplada à solução do problema sendo, as diferentes maneiras de promover este acoplamento, um assunto de pesquisa bastante atual. O uso de malhas adaptativas permite uma maior precisão de solução, comparativamente a uma malha fixa de mesmo número de pontos, não aumentando o tempo computacional, na maioria dos casos, uma vez que as características de convergência podem ser melhoradas, necessitando-se de menor esforço computacional, para se obter uma dada tolerância.

2. EQUAÇÕES GOVERNANTES

As equações governantes do problema de escoramento de fluidos newtonianos escritas para um escalar α, para o sistema de coordenadas generalizadas (x, y), podem ser expressas através da equação (2.1).

$$\frac{1}{J} \frac{\partial (\alpha \phi)}{\partial t} + \frac{\partial (\alpha \mu \phi)}{\partial x} + \frac{\partial (\alpha \mu \phi)}{\partial y} = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2}$$

(2.1)

onde,

$$C_1 = \alpha \phi; C_2 = -\beta \phi; C_3 = r \phi$$

(2.2)

O termo $P\phi$ representa o termo de pressão transformado, $\alpha \mu \phi$ são os componentes do tensor métrico, J, o jacobiano de transformação e $S\phi$ o termo fonte da equação transformada. Uma descrição geométrica e interpretativa física de algumas relações matemáticas, envolvendo a transformação de coordenadas, podem ser obtidas em Maliska (1981) e Perez (1987). As componentes contravariantes do vetor velocidade sem normalização métrica são representadas pelas variáveis U e V.

3. DISCRETIZAÇÃO DAS EQUAÇÕES GOVERNANTES

A equação (2.1), a qual representa um balanço diferencial de conservação da massa, quantidade de movimento e da energia, dependendo do parâmetro admitido para ϕ, pode ser aproximada de diversas formas sendo neste trabalho adotada a aproximação resultante da integração da equação (2.1), sobre o volume de controle de dimensões Δx e Δy, ao longo do intervalo de tempo Δt. Este procedimento respeita o princípio de conservação a nível de volume de controle.

3.1 APROXIMAÇÃO DOS TERMOS DIFUSIVOS

A integração da equação (2.1) no volume de controle cria a necessidade de avaliação dos fluxos convectivos e difusivos nas faces do volume de controle. Usando-se coordenadas generalizadas, é comum aplicar ponderação (em função da difusão/convecção) apenas nas derivadas diretas do termo difusivo, aproximando-se as derivadas cruzadas por diferenças centrais. Neste trabalho o fluxo difusivo completo é avaliado, buscando-se uma ponderação ao longo da normal. As derivadas ao longo da normal em função das derivadas ao longo de x e y são dadas por

$$\frac{\partial \phi}{\partial n}|_e = \alpha_0 \phi (C_1 \frac{\partial \phi}{\partial x} + C_2 \frac{\partial \phi}{\partial y})|_e$$

(3.1)

$$\frac{\partial \phi}{\partial n}|_n = \gamma_0 \phi (C_1 \frac{\partial \phi}{\partial x} + C_2 \frac{\partial \phi}{\partial y})|_n$$

(3.2)

Expressões análogas às equações (3.1) e (3.2) podem ser obtidas para as faces oeste e sul do volume de controle. A aproximação das derivadas na direção normal às faces dos volumes de controle, neste trabalho, é realizada com um esquema numérico onde quatro pontos são escolhidos entre os seis vizinhos à face em questão, em função do ângulo formado entre as linhas da malha. A Fig. 3.1 ilustra o esquema de aproximação para ϕ derivado na direção normal à face norte, no caso onde o ângulo entre as linhas da malha, Θ, é maior que 90°.

A equação para a aproximação de ϕ/n é

$$\frac{\partial \phi}{\partial n}|_n = (\phi_1 - \phi_2)/\Delta L$$

(3.3)

onde

$$\phi_1 = (\phi_n + b \phi_{n+1})/(a + b)$$

(3.4)

$$\phi_2 = (\phi_p + b \phi_{p+1})/(a + b)$$

(3.5)

$$a = \Delta \phi \gamma_0 \beta - b$$

(3.6)

$$b = \alpha_0 \gamma_0 \Delta \phi \cos \Omega$$

(3.7)

$$\Delta L = \alpha_0 \gamma_0 \Delta \phi \cos \Omega$$

(3.8)

Os ângulos Θ e Ω podem ser obtidos através das seguintes relações

$$\cos \Theta = \alpha_0 \phi - \gamma_0 \beta$$

(3.9)

$$\cos \Omega = \alpha_0 \phi - \gamma_0 \beta$$

(3.10)

Concluí-se salientar que o esquema proposto para o cálculo de ϕ/n nas faces do volume de controle, para o caso de malhas ortogonais, recai nas formulações tradicionais, como por exemplo...
3.2 APROXIMAÇÃO DO FLUXO CONVECTIVO NA INTERFACE
Neste trabalho é usada a função de interpolação WUDS-E, que é uma extensão do esquema WUDS, com suporte nas equações de conservação. A equação (2.1) escrita para a face leste do volume de controle resulta

$$\rho \text{u} \frac{\partial \phi}{\partial t} - C_\phi \frac{\partial \phi}{\partial x} + \mathbf{b}^\phi = 0$$ \hspace{1cm} (3.11)

onde \(\mathbf{b}^\phi \) é dado pela equação

$$\mathbf{b}^\phi = E^\phi - S^\phi - C_{\theta \phi} \phi \frac{\partial \theta}{\partial \eta} + \rho \text{u} \frac{\partial \phi}{\partial \eta}$$ \hspace{1cm} (3.12)

Resolvendo a equação (3.11) para a face leste do volume de controle, após adimensionalização (Ulson de Souza e Maliska, 1991), obtém-se

$$\phi^* = A^\phi \phi_p + A^\phi \phi_E + b^\phi b^\theta$$ \hspace{1cm} (3.13)

onde

$$a^* = 1/2 + \alpha^*$$

$$e^* = 1/2 - \alpha^*$$

$$b^\phi = \frac{\alpha}{\mathbf{Pe}^\phi}$$

sendo que

$$\alpha^* = 1/2 - (e^\phi \text{Pe}^\phi/2 - 1)/(e^\phi - 1)$$

$$b^\phi = (1/2 - a^*)/\mathbf{Pe}^\phi$$

$$b^\phi = \frac{(C_4 \phi_h + \phi_{pE} + \phi_{SE} - 2\phi_E - 2\phi_p)/2 - \rho \text{u}(\phi_{pE} + \phi_E - \phi_{SE} - \phi_S)/4)/C_4 - (P)^{\phi}/C_4 + (S^\phi)/C_4}{C_4}$$ \hspace{1cm} (3.17)

Substituindo-se as expressões de \(\phi \) e de suas derivadas, obtidas para as faces do volume de controle, na equação (2.1) integrada no volume de controle, obtem-se a equação discretizada

$$a_{pE} \phi_p = a_{pE} \phi_p + a_{pE} \phi_E + a_{pE} \phi_V + a_{pE} \phi_H + a_{pE} \phi_B + a_{pE} \phi_{NE} + a_{pE} \phi_{NW} + a_{pE} \phi_{SE} + a_{pE} \phi_{SV} + \mathbf{b}^\phi - L(C^{P \phi})$$ \hspace{1cm} (3.20)

A função de interpolação WUDS-E recai na função WUDS para o caso onde \(\mathbf{b}^\phi = 0 \). Ressalta-se no entanto que a função WUDS-E considera, além dos componentes dos termos difusivos e convectivos na direção de uma das coordenadas, a influência do termo de pressão, fonte e componentes dos termos difusivos e convectivos na direção da outra linha coordenada, minimizando dessa forma, os erros de difusão numérica. O tratamento do acoplamento pressão-velocidade é feito através do método PRIME (Maliska, 1981).

4. GERAÇÃO DE MALHAS ADAPTATIVAS
Um esquema de malhas adaptativas foi utilizado, no qual as linhas da malha se alinham às linhas de corrente do escoamento. Assim os efeitos de difusão numérica são reduzidos.

O esquema de adaptação proposto está baseado no cálculo do campo da função corrente no domínio de cálculo, através da integração da equação (4.1).

$$\dot{\text{V}} = U \text{d}\eta - V \text{d}\xi$$ \hspace{1cm} (4.1)
Deste modo obtém-se a distribuição do campo da função corrente. O campo de \(\psi \) obtido dará origem aos novos valores de \(\xi \), sendo os correspondentes valores de \(\eta \) obtidos por um método algébrico. Obtidos os novos valores de \(\xi \) e \(\eta \) são efetuados os cálculos da iteração seguinte, para obtenção de novos campos de velocidades, repetindo-se este procedimento até que seja alcançada a convergência desejada. Neste processo a malha final obtida estará alinhada com as linhas de corrente do problema em estudo.

5. QUANTIFICAÇÃO DA DIFUSÃO NUMÉRICA

Com o objetivo de quantificar a difusão numérica, a expressão para o coeficiente de falsa difusão apresentada por Vahl Davis e Mallinson (1976), equação (5.1), em coordenadas cartesianas, é estendida para coordenadas generalizadas.

\[
\Gamma_f = \rho |V| \Delta \Delta \gamma \cos^3 \theta / [4(\Delta \Delta \gamma \sin^3 \theta + \Delta \Delta \gamma \cos^3 \theta)]
\]

(5.1)

O coeficiente da falsa difusão introduzido no método numérico, em coordenadas generalizadas, é dado por

\[
\Gamma_f = \Gamma_\xi \Gamma_\eta / (\Gamma_\xi^2 + \Gamma_\eta^2)
\]

(5.2)

onde \(\Gamma_\xi \) e \(\Gamma_\eta \) são os coeficientes de falsa difusão nas direções \(\xi \) e \(\eta \), respectivamente, dados por

\[
\Gamma_\xi = \rho \Delta \Delta \gamma \cos \theta / 2
\]

(5.3)

\[
\Gamma_\eta = \rho \Delta \Delta \gamma \sin \theta / 2
\]

(5.4)

\[
l = \cos \theta \left[(x \ u + y \ v) / V \right]^{-0.5}
\]

(5.5)

\[
m = \left(x \ u + y \ v \right) / \left(\alpha \gamma \right)
\]

(5.6)

sendo \(\theta \) o ângulo entre o vetor velocidade e o eixo \(\xi \).

Substituindo-se as equações (5.3) a (5.6) na equação (5.2) obtém-se

\[
\Gamma_f = \left(\rho \Delta \Delta \gamma \Delta \Delta \gamma \cos \theta / 2 \right) \left[l \delta \gamma / \sqrt{\gamma} \right] (x \ u + y \ v)^2 + \Delta \Delta \gamma \left(\alpha \gamma \right) (x \ u + y \ v)^2
\]

(5.7)

Para o caso de malhas cartesionas, a equação (5.7) reduz-se na equação (5.1).

O problema testado escolhido é o escoamento de fluido entre duas placas planas em ângulo de 90\(^\circ\), conforme ilustra o esquema apresentado na Fig. 5.1, onde podem ser vistos os parâmetros geométricos e a malha inicial utilizada.

O campo de coeficiente de falsa difusão \(\Gamma_f \) foi obtido para malha 10x10, sem adaptação (ITMAA=1) e após 4 adaptações (ITMAA=5), sendo os resultados apresentados nas FIGURAS 5.2 e 5.3, respectivamente.

Comem salientar que a utilização da estratégia de malha adaptativa, alinhando-se as linhas coordenadas com relação ao vetor velocidade, reduz expressivamente o coeficiente de falsa difusão, comparativamente à utilização de malha fixa.

Com o objetivo de se obter uma análise global da falsa difusão em todo o domínio computacional, foi calculado um coeficiente de falsa difusão médio, através de

FIGURA 5.1 - Escoamento entre duas placas planas paralelas, em ângulo de 90\(^\circ\).
FIGURA 5.2 - Campo do coeficiente de falsa difusão, sem adaptação da malha.

FIGURA 5.3 - Campo do coeficiente de falsa difusão, com adaptação da malha, ITMAA=5.

FIGURA 5.4 - Influência do número de adaptações de malha no valor de \(\Gamma_T \).

\[
\Gamma_T = \left(\sum_{i=1}^{N} \Gamma_i \right)^{0.5} / N
\]

onde \(N \) é o número de pontos total no domínio e \(\Gamma_i \) é o valor de \(\Gamma \) no ponto \(i \) do domínio.

A FIGURA 5.4 apresenta o valor de \(\Gamma_T \) obtido em função do número de adaptações utilizado (ITMAA).

6. CONCLUSÃO

A utilização de malhas adaptativas que se alinham com a direção do vetor velocidade mostrou ser uma eficiente estratégia para a minimização da difusão numérica, reduzindo de nove vezes o valor de \(\Gamma_T \), em comparação com o obtido com malha sem adaptação.

A extensão da expressão de Vahl Davis e Mallinson para coordenadas generalizadas \((\xi, \eta)\) viabiliza a quantificação da difusão numérica neste sistema de coordenadas.

A equação para quantificar a difusão numérica no sistema de coordenadas generalizadas recai na equação de Vahl Davis e Mallinson, quando aplicada ao sistema de coordenadas cartesianas.
A função de interpolação utilizada, WDG-E, é simples e fácil de implementar e preserva a influência dos termos difusivos, convectivos, pressão e fonte.

O procedimento adotado para a avaliação das derivadas normais às faces do volume de controle retém total consistência com os parâmetros geométricos, considerando-se a direção normal às faces na malha computacional, levando em conta o ângulo entre as linhas coordenadas, calculando adequadamente (ap/Δn) quando malhas não ortogonais estão envolvidas.

REFERENCIAS